Optimized control of skid steering mobile robot with slip conditions

O. Elshazly, Z. Zyada, Abdelfatah M. Mohamed, G. Muscato
{"title":"Optimized control of skid steering mobile robot with slip conditions","authors":"O. Elshazly, Z. Zyada, Abdelfatah M. Mohamed, G. Muscato","doi":"10.1109/AIM.2015.7222663","DOIUrl":null,"url":null,"abstract":"Application of different optimization techniques for nonlinear controller parameters of a skid steering mobile robot (SSMR) with its inherited slip characteristics is crucial in saving designer's time and effort. In this paper, two computational optimization techniques, particle swarm optimization (PSO) and genetic algorithms (GA), are applied, evaluated and compared to optimize the nonlinear controller parameters of an SSMR moving in a plane. The SSMR controller is designed for tracking a reference robot with the same kinematics. For the purpose of simulation, SSMR kinematics is extended to include slip effects. Simulation programs for both optimization techniques are implemented and the optimized controller parameters are obtained. The system response is examined with the optimized parameters for tracking different trajectories in the presence of different types of disturbances and slip coefficients. Simulation results show better performance of PSO tuning based algorithm than GA one, especially in terms of Mean Square Error (MSE) performance index and computational time.","PeriodicalId":199432,"journal":{"name":"2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM)","volume":"40 9","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIM.2015.7222663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Application of different optimization techniques for nonlinear controller parameters of a skid steering mobile robot (SSMR) with its inherited slip characteristics is crucial in saving designer's time and effort. In this paper, two computational optimization techniques, particle swarm optimization (PSO) and genetic algorithms (GA), are applied, evaluated and compared to optimize the nonlinear controller parameters of an SSMR moving in a plane. The SSMR controller is designed for tracking a reference robot with the same kinematics. For the purpose of simulation, SSMR kinematics is extended to include slip effects. Simulation programs for both optimization techniques are implemented and the optimized controller parameters are obtained. The system response is examined with the optimized parameters for tracking different trajectories in the presence of different types of disturbances and slip coefficients. Simulation results show better performance of PSO tuning based algorithm than GA one, especially in terms of Mean Square Error (MSE) performance index and computational time.
具有滑移条件的滑移转向移动机器人的优化控制
滑移转向移动机器人具有滑移的遗传特性,对其非线性控制器参数采用不同的优化技术对于节省设计人员的时间和精力至关重要。本文应用粒子群算法(PSO)和遗传算法(GA)两种计算优化技术,对平面运动的SSMR的非线性控制器参数进行了优化,并进行了评价和比较。SSMR控制器是为跟踪具有相同运动学的参考机器人而设计的。为了仿真的目的,扩展了SSMR的运动学以包含滑移效应。实现了两种优化方法的仿真程序,得到了优化后的控制器参数。在存在不同类型的扰动和滑移系数的情况下,用优化后的参数对不同轨迹的系统响应进行了研究。仿真结果表明,基于粒子群优化算法的性能优于遗传算法,特别是在均方误差(MSE)性能指标和计算时间方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信