Bend waveguide with broad bandwidth and high transmission efficiency based on air-hole photonic crystal

Xiaoyuan Ren, Lishuang Feng, Zhili Lin
{"title":"Bend waveguide with broad bandwidth and high transmission efficiency based on air-hole photonic crystal","authors":"Xiaoyuan Ren, Lishuang Feng, Zhili Lin","doi":"10.1109/NEMS.2013.6559736","DOIUrl":null,"url":null,"abstract":"As one of the most competitive materials of the integrated optics, photonic crystals (PCs) have been investigated for more than 20 years since its conception was proposed. In this work, we established a novel structure of the bend waveguide which is composed of photonic crystal (PC) with triangular lattice of air-holes. By optimizing the bend structures, not only the transmission bandwidth of the whole waveguide is greatly improved, but also the transmission efficiency is enhanced. The transmission efficiencies of the wavelengths between 1504nm and 1586nm can reach more than 80%. The highest transmission efficiency 95% can be obtained for the wavelength of 1553nm. By simulating the transmission of the optimized bend waveguide, the light wave whose wavelength is 1553nm can propagate effectively.","PeriodicalId":308928,"journal":{"name":"The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2013.6559736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As one of the most competitive materials of the integrated optics, photonic crystals (PCs) have been investigated for more than 20 years since its conception was proposed. In this work, we established a novel structure of the bend waveguide which is composed of photonic crystal (PC) with triangular lattice of air-holes. By optimizing the bend structures, not only the transmission bandwidth of the whole waveguide is greatly improved, but also the transmission efficiency is enhanced. The transmission efficiencies of the wavelengths between 1504nm and 1586nm can reach more than 80%. The highest transmission efficiency 95% can be obtained for the wavelength of 1553nm. By simulating the transmission of the optimized bend waveguide, the light wave whose wavelength is 1553nm can propagate effectively.
基于空穴光子晶体的宽带高传输效率弯曲波导
光子晶体作为集成光学领域最具竞争力的材料之一,自提出以来,人们对其进行了20多年的研究。在本工作中,我们建立了一种新型的弯曲波导结构,它是由具有三角形气孔晶格的光子晶体组成的。通过对弯曲结构的优化,不仅大大提高了整个波导的传输带宽,而且提高了传输效率。在1504nm ~ 1586nm波段的传输效率可达80%以上。波长为1553nm时,传输效率最高,达到95%。通过模拟优化后的弯曲波导的传输,可以有效地传输波长为1553nm的光波。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信