MapReduce Approach to Build Network User Profiles with Top-k Rankings for Network Security

A. Parres-Peredo, I. Piza-Dávila, Francisco Cervantes
{"title":"MapReduce Approach to Build Network User Profiles with Top-k Rankings for Network Security","authors":"A. Parres-Peredo, I. Piza-Dávila, Francisco Cervantes","doi":"10.1109/NTMS.2018.8328702","DOIUrl":null,"url":null,"abstract":"Network-user profiling has been used as security technique to detect unknown or malicious behaviors. Top-k rankings of reached services is a new technique for building user profiles. This technique requires to keep in memory all the traffic data during a period of time to build the rankings. However, a single user can produce gigabytes of network traffic data, which may result in low execution performance and out-of memory errors. This work proposes a MapReduce approach that generates top-k rankings from huge network capture files.","PeriodicalId":140704,"journal":{"name":"2018 9th IFIP International Conference on New Technologies, Mobility and Security (NTMS)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 9th IFIP International Conference on New Technologies, Mobility and Security (NTMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NTMS.2018.8328702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Network-user profiling has been used as security technique to detect unknown or malicious behaviors. Top-k rankings of reached services is a new technique for building user profiles. This technique requires to keep in memory all the traffic data during a period of time to build the rankings. However, a single user can produce gigabytes of network traffic data, which may result in low execution performance and out-of memory errors. This work proposes a MapReduce approach that generates top-k rankings from huge network capture files.
基于MapReduce的Top-k排序网络用户配置文件构建方法
网络用户分析已被用作检测未知或恶意行为的安全技术。对到达的服务进行Top-k排名是一种建立用户档案的新技术。这种技术需要在一段时间内将所有流量数据保存在内存中以构建排名。但是,单个用户可能产生千兆字节的网络流量数据,这可能导致低执行性能和内存不足错误。这项工作提出了一种MapReduce方法,可以从巨大的网络捕获文件中生成top-k排名。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信