A Posteriori Strategy to Identify Robust Solutions in the Many-Objective Design Optimization of an Axial-Flux Permanent Magnet Synchronous Generator

Marcos F. O. Ribeiro, C. L. Sabioni, J. Vasconcelos
{"title":"A Posteriori Strategy to Identify Robust Solutions in the Many-Objective Design Optimization of an Axial-Flux Permanent Magnet Synchronous Generator","authors":"Marcos F. O. Ribeiro, C. L. Sabioni, J. Vasconcelos","doi":"10.1109/COMPUMAG45669.2019.9032746","DOIUrl":null,"url":null,"abstract":"Parametric uncertainties inherently exist in most real-world equipment design. In a generator design optimization process, parametric uncertainties are an important issue given the negative impact they have on generator’s efficiency. In this work, the NSGA-III algorithm is used to obtain a set of robust optimum designs of an Axial-Flux Permanent Magnet Synchronous Generator subjected to parametric uncertainties, and thereafter an a posteriori strategy is applied in the set in order to identify the best robust solution which has low parametric sensitivity and high nominal efficiency to be implemented in practice. This methodology was developed with the aim to select the best robust optimum solution from the robust Pareto-optimal set in a many-objective environment.","PeriodicalId":317315,"journal":{"name":"2019 22nd International Conference on the Computation of Electromagnetic Fields (COMPUMAG)","volume":"5092 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 22nd International Conference on the Computation of Electromagnetic Fields (COMPUMAG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPUMAG45669.2019.9032746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Parametric uncertainties inherently exist in most real-world equipment design. In a generator design optimization process, parametric uncertainties are an important issue given the negative impact they have on generator’s efficiency. In this work, the NSGA-III algorithm is used to obtain a set of robust optimum designs of an Axial-Flux Permanent Magnet Synchronous Generator subjected to parametric uncertainties, and thereafter an a posteriori strategy is applied in the set in order to identify the best robust solution which has low parametric sensitivity and high nominal efficiency to be implemented in practice. This methodology was developed with the aim to select the best robust optimum solution from the robust Pareto-optimal set in a many-objective environment.
轴向磁通永磁同步发电机多目标优化设计中鲁棒解的后验辨识策略
参数不确定性固有地存在于大多数实际设备设计中。在发电机设计优化过程中,参数不确定性是一个重要的问题,因为参数不确定性会对发电机的效率产生负面影响。本文采用NSGA-III算法获得了一组参数不确定性条件下的轴流式永磁同步发电机的鲁棒优化设计,并在此基础上采用后检策略,确定了参数灵敏度低、标称效率高的鲁棒优化方案。该方法旨在从多目标环境下的鲁棒pareto最优集中选择最佳鲁棒最优解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信