Thermal performance analysis of photoelectric parameters on high-power LEDs packaging modules

Lei Liu, Daoguo Yang, G.Q. Zhang, Zhi You, Fengze Hou, Dongjing Liu
{"title":"Thermal performance analysis of photoelectric parameters on high-power LEDs packaging modules","authors":"Lei Liu, Daoguo Yang, G.Q. Zhang, Zhi You, Fengze Hou, Dongjing Liu","doi":"10.1109/ESIME.2011.5765842","DOIUrl":null,"url":null,"abstract":"Compared with incandescent lamps and fluorescent lamps, nowadays LEDs (Light Emitting Diodes) are power saving, environment-friendly, and have the advantages of long lifetime and flexible color output. Therefore, LEDs are being widely used in many fields. In this paper, three high-power LEDs packaging modules with different packaging structures were selected to do the performance analysis based on the experiments. In the measurement, the LED junction temperature was controlled at seven levels (25°C, 50°C, 65°C, 75°C, 85°C, 95C, 100°C) in sequence. The thermal variation of some photoelectric parameters for LED packaging modules, such as forward voltage, relative flux output, correlated color temperature (CCT), color rending index (Ra), luminous efficiency and spectrum, were focused on and analyzed here. The experimental results demonstrated that the luminous flux, luminous efficacy and forward voltage of LEDs decreased with the increase of the junction temperature, but these three LEDs packaging modules have different varieties on CRI, CCT and spectrum. The related reasons were analyzed briefly in this paper.","PeriodicalId":115489,"journal":{"name":"2011 12th Intl. Conf. on Thermal, Mechanical & Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 12th Intl. Conf. on Thermal, Mechanical & Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESIME.2011.5765842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Compared with incandescent lamps and fluorescent lamps, nowadays LEDs (Light Emitting Diodes) are power saving, environment-friendly, and have the advantages of long lifetime and flexible color output. Therefore, LEDs are being widely used in many fields. In this paper, three high-power LEDs packaging modules with different packaging structures were selected to do the performance analysis based on the experiments. In the measurement, the LED junction temperature was controlled at seven levels (25°C, 50°C, 65°C, 75°C, 85°C, 95C, 100°C) in sequence. The thermal variation of some photoelectric parameters for LED packaging modules, such as forward voltage, relative flux output, correlated color temperature (CCT), color rending index (Ra), luminous efficiency and spectrum, were focused on and analyzed here. The experimental results demonstrated that the luminous flux, luminous efficacy and forward voltage of LEDs decreased with the increase of the junction temperature, but these three LEDs packaging modules have different varieties on CRI, CCT and spectrum. The related reasons were analyzed briefly in this paper.
大功率led封装模组光电参数热性能分析
与白炽灯和荧光灯相比,如今的led (Light Emitting Diodes)具有节能、环保、寿命长、颜色输出灵活等优点。因此,led在许多领域得到了广泛的应用。本文在实验的基础上,选取了三种不同封装结构的大功率led封装模块进行性能分析。在测量中,LED结温被依次控制在25°C、50°C、65°C、75°C、85°C、95°C、100°C七个级别。重点分析了LED封装模块的正向电压、相对磁通输出、相关色温(CCT)、显色指数(Ra)、发光效率和光谱等光电参数的热变化规律。实验结果表明,随着结温的升高,led的光通量、光效和正向电压均有所降低,但这三种led封装模块在CRI、CCT和光谱上有不同的变化。本文简要分析了相关原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信