{"title":"Automatic Reconstruction of Building-Scale Indoor 3D Environment with a Deep-Reinforcement-Learning-Based Mobile Robot","authors":"Menglong Yang, K. Nagao","doi":"10.31875/2409-9694.2019.06.2","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to digitize the environments in which humans live, at low cost, and reconstruct highly accurate three-dimensional environments that are based on those in the real world. This three-dimensional content can be used such as for virtual reality environments and three-dimensional maps for automatic driving systems. In general, however, a three-dimensional environment must be carefully reconstructed by manually moving the sensors used to first scan the real environment on which the three-dimensional one is based. This is done so that every corner of an entire area can be measured, but time and costs increase as the area expands. Therefore, a system that creates three-dimensional content that is based on real-world large-scale buildings at low cost is proposed. This involves automatically scanning the indoors with a mobile robot that uses low-cost sensors and generating 3D point clouds. When the robot reaches an appropriate measurement position, it collects the three-dimensional data of shapes observable from that position by using a 3D sensor and 360-degree panoramic camera. The problem of determining an appropriate measurement position is called the “next best view problem,” and it is difficult to solve in a complicated indoor environment. To deal with this problem, a deep reinforcement learning method is employed. It combines reinforcement learning, with which an autonomous agent learns strategies for selecting behavior, and deep learning done using a neural network. As a result, 3D point cloud data can be generated with better quality than the conventional rule-based approach.","PeriodicalId":234563,"journal":{"name":"International Journal of Robotics and Automation Technology","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Robotics and Automation Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31875/2409-9694.2019.06.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The aim of this paper is to digitize the environments in which humans live, at low cost, and reconstruct highly accurate three-dimensional environments that are based on those in the real world. This three-dimensional content can be used such as for virtual reality environments and three-dimensional maps for automatic driving systems. In general, however, a three-dimensional environment must be carefully reconstructed by manually moving the sensors used to first scan the real environment on which the three-dimensional one is based. This is done so that every corner of an entire area can be measured, but time and costs increase as the area expands. Therefore, a system that creates three-dimensional content that is based on real-world large-scale buildings at low cost is proposed. This involves automatically scanning the indoors with a mobile robot that uses low-cost sensors and generating 3D point clouds. When the robot reaches an appropriate measurement position, it collects the three-dimensional data of shapes observable from that position by using a 3D sensor and 360-degree panoramic camera. The problem of determining an appropriate measurement position is called the “next best view problem,” and it is difficult to solve in a complicated indoor environment. To deal with this problem, a deep reinforcement learning method is employed. It combines reinforcement learning, with which an autonomous agent learns strategies for selecting behavior, and deep learning done using a neural network. As a result, 3D point cloud data can be generated with better quality than the conventional rule-based approach.