Video abstraction inspired by human visual attention models

S. O. Gilani, Mohsin Jamil
{"title":"Video abstraction inspired by human visual attention models","authors":"S. O. Gilani, Mohsin Jamil","doi":"10.1109/IEMCON.2018.8614889","DOIUrl":null,"url":null,"abstract":"This paper describes an application of three different state-of-the-art human inspired visual attention models to video abstraction. Two types of video abstractions, video skim and key frame extraction, are performed over three different genres of videos. Qualitative and quantitative results are reported based on user studies and statistical tests. A comparison is made with human made video abstraction set to benchmark the current analysis. We report some abstraction similarities at scene level showing that all three models are successful in capturing semantic content despite having anatomical differences. However different models are more suitable for different genres of videos.","PeriodicalId":368939,"journal":{"name":"2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)","volume":"50 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMCON.2018.8614889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper describes an application of three different state-of-the-art human inspired visual attention models to video abstraction. Two types of video abstractions, video skim and key frame extraction, are performed over three different genres of videos. Qualitative and quantitative results are reported based on user studies and statistical tests. A comparison is made with human made video abstraction set to benchmark the current analysis. We report some abstraction similarities at scene level showing that all three models are successful in capturing semantic content despite having anatomical differences. However different models are more suitable for different genres of videos.
受人类视觉注意模型启发的视频抽象
本文介绍了三种不同的最先进的人类视觉注意模型在视频抽象中的应用。两种类型的视频抽象,视频略读和关键帧提取,在三个不同类型的视频执行。根据用户研究和统计测试报告定性和定量结果。并与人工视频抽象集进行了比较,作为当前分析的基准。我们报告了场景级别上的一些抽象相似性,表明尽管存在解剖上的差异,但所有三种模型都成功地捕获了语义内容。然而,不同的模型更适合不同类型的视频。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信