A study of aspect-level sentiment analysis based on deep learning

Yenan Chen, Yingjia Li, Juntao Ma
{"title":"A study of aspect-level sentiment analysis based on deep learning","authors":"Yenan Chen, Yingjia Li, Juntao Ma","doi":"10.1109/ISAIAM55748.2022.00009","DOIUrl":null,"url":null,"abstract":"The study of aspect-level sentiment analysis using deep learning methods is one of the more important research directions in the field of natural language processing in recent years. In this paper, we address the problem of insufficient extraction of deep semantic features in existing aspect-level sentiment analysis research, design and build a sentiment analysis model based on the pre-trained language model BERT, fuse BiLSTM and GCN deep learning methods, analyze the sentiment tendency on the collected product review dataset, design relevant experiments to compare in the same application scenario, and verify the effectiveness of the proposed model.","PeriodicalId":382895,"journal":{"name":"2022 2nd International Symposium on Artificial Intelligence and its Application on Media (ISAIAM)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Symposium on Artificial Intelligence and its Application on Media (ISAIAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAIAM55748.2022.00009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The study of aspect-level sentiment analysis using deep learning methods is one of the more important research directions in the field of natural language processing in recent years. In this paper, we address the problem of insufficient extraction of deep semantic features in existing aspect-level sentiment analysis research, design and build a sentiment analysis model based on the pre-trained language model BERT, fuse BiLSTM and GCN deep learning methods, analyze the sentiment tendency on the collected product review dataset, design relevant experiments to compare in the same application scenario, and verify the effectiveness of the proposed model.
基于深度学习的方面级情感分析研究
利用深度学习方法进行方面级情感分析的研究是近年来自然语言处理领域较为重要的研究方向之一。本文针对现有方面级情感分析研究中深层语义特征提取不足的问题,设计并构建了基于预训练语言模型BERT的情感分析模型,融合BiLSTM和GCN深度学习方法,分析收集到的产品评论数据集上的情感倾向,设计相关实验进行相同应用场景下的对比,验证了所提模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信