HHH: An Online Medical Chatbot System based on Knowledge Graph and Hierarchical Bi-Directional Attention

Qiming Bao, Lin Ni, J. Liu
{"title":"HHH: An Online Medical Chatbot System based on Knowledge Graph and Hierarchical Bi-Directional Attention","authors":"Qiming Bao, Lin Ni, J. Liu","doi":"10.1145/3373017.3373049","DOIUrl":null,"url":null,"abstract":"This paper proposes a chatbot framework that adopts a hybrid model which consists of a knowledge graph and a text similarity model. Based on this chatbot framework, we build HHH, an online question-and-answer (QA) Healthcare Helper system for answering complex medical questions. HHH maintains a knowledge graph constructed from medical data collected from the Internet. HHH also implements a novel text representation and similarity deep learning model, Hierarchical BiLSTM Attention Model (HBAM), to find the most similar question from a large QA dataset. We compare HBAM with other state-of-the-art language models such as bidirectional encoder representation from transformers (BERT) and Manhattan LSTM Model (MaLSTM). We train and test the models with a subset of the Quora duplicate questions dataset in the medical area. The experimental results show that our model is able to achieve a superior performance than these existing methods.","PeriodicalId":297760,"journal":{"name":"Proceedings of the Australasian Computer Science Week Multiconference","volume":"189 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Australasian Computer Science Week Multiconference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3373017.3373049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

This paper proposes a chatbot framework that adopts a hybrid model which consists of a knowledge graph and a text similarity model. Based on this chatbot framework, we build HHH, an online question-and-answer (QA) Healthcare Helper system for answering complex medical questions. HHH maintains a knowledge graph constructed from medical data collected from the Internet. HHH also implements a novel text representation and similarity deep learning model, Hierarchical BiLSTM Attention Model (HBAM), to find the most similar question from a large QA dataset. We compare HBAM with other state-of-the-art language models such as bidirectional encoder representation from transformers (BERT) and Manhattan LSTM Model (MaLSTM). We train and test the models with a subset of the Quora duplicate questions dataset in the medical area. The experimental results show that our model is able to achieve a superior performance than these existing methods.
基于知识图和分层双向关注的在线医疗聊天机器人系统
本文提出了一种采用知识图和文本相似度混合模型的聊天机器人框架。基于这个聊天机器人框架,我们构建了HHH,一个在线问答(QA)医疗保健助手系统,用于回答复杂的医疗问题。HHH维护一个从互联网上收集的医疗数据构建的知识图谱。HHH还实现了一种新的文本表示和相似度深度学习模型——分层BiLSTM注意力模型(HBAM),用于从大型QA数据集中找到最相似的问题。我们将HBAM与其他最先进的语言模型进行了比较,例如来自变压器的双向编码器表示(BERT)和曼哈顿LSTM模型(MaLSTM)。我们使用医疗领域Quora重复问题数据集的一个子集来训练和测试模型。实验结果表明,我们的模型能够达到比现有方法更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信