Comparison of Classification Algorithms of the Autism Spectrum Disorder Diagnosis

A. Lawi, F. Aziz
{"title":"Comparison of Classification Algorithms of the Autism Spectrum Disorder Diagnosis","authors":"A. Lawi, F. Aziz","doi":"10.1109/EIConCIT.2018.8878593","DOIUrl":null,"url":null,"abstract":"ASD sufferers face difficulties in early development compared to normal humans. Various tools, clinical, and non-clinical approaches have been implemented but take a long time to produce a complete diagnosis. the solution by adopting machine learning. This study proposes the application of cross-validation techniques in the Decision Tree method, Linear Discriminant Analysis, Logistic Regression, SVM, and KNN and determines the best k value in each classification method because the shift of datasets when using cross-validation techniques in the classification method is one factor that can cause the estimate to be inaccurate. The results show that the decision tree provides an accuracy of 100% in each of the k values that have been determined previously. 96.9% on Linear Discriminant Analysis with $k=7, k=9$, and $k =10$. 99.7% in Logistic Regression with values of $k=2$ and $k= 3$. 99.9% in Support Vector Machine with values of $k=9$ and $k =1\\theta$ and 94.2% for K-Nearest Neighbors with a value of $k=8$.","PeriodicalId":424909,"journal":{"name":"2018 2nd East Indonesia Conference on Computer and Information Technology (EIConCIT)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 2nd East Indonesia Conference on Computer and Information Technology (EIConCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIConCIT.2018.8878593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

ASD sufferers face difficulties in early development compared to normal humans. Various tools, clinical, and non-clinical approaches have been implemented but take a long time to produce a complete diagnosis. the solution by adopting machine learning. This study proposes the application of cross-validation techniques in the Decision Tree method, Linear Discriminant Analysis, Logistic Regression, SVM, and KNN and determines the best k value in each classification method because the shift of datasets when using cross-validation techniques in the classification method is one factor that can cause the estimate to be inaccurate. The results show that the decision tree provides an accuracy of 100% in each of the k values that have been determined previously. 96.9% on Linear Discriminant Analysis with $k=7, k=9$, and $k =10$. 99.7% in Logistic Regression with values of $k=2$ and $k= 3$. 99.9% in Support Vector Machine with values of $k=9$ and $k =1\theta$ and 94.2% for K-Nearest Neighbors with a value of $k=8$.
自闭症谱系障碍诊断分类算法的比较
与正常人相比,ASD患者在早期发育方面面临困难。已经实施了各种工具,临床和非临床方法,但需要很长时间才能产生完整的诊断。解决方案是采用机器学习。本研究提出在决策树方法、线性判别分析、逻辑回归、支持向量机和KNN中应用交叉验证技术,并确定每种分类方法中的最佳k值,因为在分类方法中使用交叉验证技术时,数据集的移位是导致估计不准确的一个因素。结果表明,决策树在之前确定的每个k值中都提供了100%的准确性。k=7、k=9、k= 10时线性判别分析的96.9%。在$k=2$和$k= 3$的情况下,99.7%的Logistic回归。值为$k=9$和$k= 1\theta$的支持向量机的准确率为99.9%,值为$k=8$的k近邻的准确率为94.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信