{"title":"Handwritten Character Recognition of Telugu Characters","authors":"Yash Prashant Wasalwar, Kishan Singh Bagga, Pvrr Bhogendra Rao, S. Dongre","doi":"10.1109/I2CT57861.2023.10126377","DOIUrl":null,"url":null,"abstract":"Given the cursive structure of the writing and the similarity in shape of the letters, Telugu handwritten character identification is an interesting topic. The lack of Telugu-related handwritten datasets has slowed the development of handwritten word recognizers and forced researchers to compare various approaches. Modern deep neural networks find it difficult because they often need hundreds or thousands of photos per class. It has been demonstrated that learning important aspects of machine learning systems can be computationally expensive and challenging when there is a limited amount of data available. This research analysis work proposes a use case on the pre-existing model called EfficientNet and on top of that a custom pooling layer is added to check the trend as the dataset size increases of Telugu characters. The dataset has been divided into three categories, namely, Vowels only dataset, Consonant only dataset, and All character dataset. Proposed model was trained with a considerable amount of dataset containing half a thousand of handwritten Telugu characters and has produced some fascinating results which were worth observing. The accuracies had followed a certain trend. The model was tested on the dataset collected, which were filtered out to record any performance improvement and improvement was observed, where average accuracy went from 55% to 92%.","PeriodicalId":150346,"journal":{"name":"2023 IEEE 8th International Conference for Convergence in Technology (I2CT)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 8th International Conference for Convergence in Technology (I2CT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2CT57861.2023.10126377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Given the cursive structure of the writing and the similarity in shape of the letters, Telugu handwritten character identification is an interesting topic. The lack of Telugu-related handwritten datasets has slowed the development of handwritten word recognizers and forced researchers to compare various approaches. Modern deep neural networks find it difficult because they often need hundreds or thousands of photos per class. It has been demonstrated that learning important aspects of machine learning systems can be computationally expensive and challenging when there is a limited amount of data available. This research analysis work proposes a use case on the pre-existing model called EfficientNet and on top of that a custom pooling layer is added to check the trend as the dataset size increases of Telugu characters. The dataset has been divided into three categories, namely, Vowels only dataset, Consonant only dataset, and All character dataset. Proposed model was trained with a considerable amount of dataset containing half a thousand of handwritten Telugu characters and has produced some fascinating results which were worth observing. The accuracies had followed a certain trend. The model was tested on the dataset collected, which were filtered out to record any performance improvement and improvement was observed, where average accuracy went from 55% to 92%.