Sensing Interpolation Strategies for a Mobile Crowdsensing Platform

M. Girolami, S. Chessa, G. Adami, M. Dragone, L. Foschini
{"title":"Sensing Interpolation Strategies for a Mobile Crowdsensing Platform","authors":"M. Girolami, S. Chessa, G. Adami, M. Dragone, L. Foschini","doi":"10.1109/MobileCloud.2017.8","DOIUrl":null,"url":null,"abstract":"Mobile Crowd Sensing (MCS) allows an efficient collection of heterogeneous data over large areas, leveraging on the cooperation of MCS subscribers that offer services on their smartphones to this purpose. However, the coverage that a MCS platform can provide for a given area depends on the availability of subscribers and on their mobility in that area. To guarantee a better coverage, a MCS platform may employ a combination of static and mobile sensors and interpolation strategies that may provide meaningful data for all the area under observation. We discuss how two mechanisms (mixing static and mobile sensors and interpolation) can be combined together by using the large-scale mobility datasets of ParticipAct and the Weather Underground dataset.","PeriodicalId":106143,"journal":{"name":"2017 5th IEEE International Conference on Mobile Cloud Computing, Services, and Engineering (MobileCloud)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 5th IEEE International Conference on Mobile Cloud Computing, Services, and Engineering (MobileCloud)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MobileCloud.2017.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Mobile Crowd Sensing (MCS) allows an efficient collection of heterogeneous data over large areas, leveraging on the cooperation of MCS subscribers that offer services on their smartphones to this purpose. However, the coverage that a MCS platform can provide for a given area depends on the availability of subscribers and on their mobility in that area. To guarantee a better coverage, a MCS platform may employ a combination of static and mobile sensors and interpolation strategies that may provide meaningful data for all the area under observation. We discuss how two mechanisms (mixing static and mobile sensors and interpolation) can be combined together by using the large-scale mobility datasets of ParticipAct and the Weather Underground dataset.
移动众测平台的传感插值策略
移动人群传感(MCS)允许在大范围内有效地收集异构数据,利用MCS用户的合作,在他们的智能手机上提供服务。但是,MCS平台可以为给定区域提供的覆盖范围取决于用户的可用性及其在该区域的移动性。为了保证更好的覆盖范围,MCS平台可以结合使用静态和移动传感器以及插值策略,为所有观测区域提供有意义的数据。通过使用ParticipAct的大规模移动数据集和Weather Underground数据集,我们讨论了如何将两种机制(混合静态和移动传感器和插值)结合在一起。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信