Quantization effects on audio signals for detecting intruders in wild areas using TESPAR S-matrix and artificial neural networks

L. Grama, C. Rusu, G. Oltean, L. Ivanciu
{"title":"Quantization effects on audio signals for detecting intruders in wild areas using TESPAR S-matrix and artificial neural networks","authors":"L. Grama, C. Rusu, G. Oltean, L. Ivanciu","doi":"10.1109/SPED.2015.7343079","DOIUrl":null,"url":null,"abstract":"This paper analyses the influence of quantization of audio signals on the Time Encoding Signal Processing and Recognition S-matrix, in order to detect and classify intruders in wildlife areas. The intruder classification is performed with multilayer feed-forward neural networks. The databases involved in this work consist of 640 waveforms of audio signals originated from 4 different types of sources. The experimental results proves that in the proposed audio based wildlife intruder detection framework, the overall correct classification rates remain very high even if the number of bits used for quantization decreases from 16 to 4.","PeriodicalId":426074,"journal":{"name":"2015 International Conference on Speech Technology and Human-Computer Dialogue (SpeD)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Speech Technology and Human-Computer Dialogue (SpeD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPED.2015.7343079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper analyses the influence of quantization of audio signals on the Time Encoding Signal Processing and Recognition S-matrix, in order to detect and classify intruders in wildlife areas. The intruder classification is performed with multilayer feed-forward neural networks. The databases involved in this work consist of 640 waveforms of audio signals originated from 4 different types of sources. The experimental results proves that in the proposed audio based wildlife intruder detection framework, the overall correct classification rates remain very high even if the number of bits used for quantization decreases from 16 to 4.
基于TESPAR s -矩阵和人工神经网络的野外入侵检测音频信号量化效应
本文分析了音频信号量化对时间编码信号处理和识别s矩阵的影响,以检测和分类野生地区的入侵者。采用多层前馈神经网络对入侵者进行分类。这项工作涉及的数据库包括来自4种不同来源的640个音频信号波形。实验结果表明,在所提出的基于音频的野生动物入侵检测框架中,即使用于量化的比特数从16位减少到4位,总体正确分类率仍然很高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信