Trees of Dot Products in Thin Subsets of Rd

A. Nadjimzadah
{"title":"Trees of Dot Products in Thin Subsets of Rd","authors":"A. Nadjimzadah","doi":"10.32523/2616-7182/bulmathenu.2022/2.2","DOIUrl":null,"url":null,"abstract":"A. Iosevich and K. Taylor showed that compact subsets of Rd with Hausdorff dimension greater than (d+1)/2 contain trees with gaps in an open interval. Under the same dimensional threshold, we prove the analogous result where distance is replaced by the dot product. We additionally show that the gaps of embedded trees of dot products are prevalentin a set of positive Lebesgue measure, and for Ahlfors-David regular sets, the number of treeswith given gaps agrees with the regular value theorem.","PeriodicalId":286555,"journal":{"name":"BULLETIN of the L N Gumilyov Eurasian National University MATHEMATICS COMPUTER SCIENCE MECHANICS Series","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BULLETIN of the L N Gumilyov Eurasian National University MATHEMATICS COMPUTER SCIENCE MECHANICS Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32523/2616-7182/bulmathenu.2022/2.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A. Iosevich and K. Taylor showed that compact subsets of Rd with Hausdorff dimension greater than (d+1)/2 contain trees with gaps in an open interval. Under the same dimensional threshold, we prove the analogous result where distance is replaced by the dot product. We additionally show that the gaps of embedded trees of dot products are prevalentin a set of positive Lebesgue measure, and for Ahlfors-David regular sets, the number of treeswith given gaps agrees with the regular value theorem.
Rd的细子集中的点积树
A. Iosevich和K. Taylor证明了Hausdorff维数大于(d+1)/2的Rd的紧子集包含开区间中有间隙的树。在相同的维数阈值下,我们证明了用点积代替距离的类似结果。此外,我们还证明了点积嵌入树的间隙在正Lebesgue测度集合中是普遍存在的,并且对于Ahlfors-David正则集,具有给定间隙的树的数量符合正则值定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信