Gesture recognition using leap motion: a comparison between machine learning algorithms

Ivo Aluízio Stinghen Filho, Estevam Nicolas Chen, J. Junior, Ricardo da Silva Barboza
{"title":"Gesture recognition using leap motion: a comparison between machine learning algorithms","authors":"Ivo Aluízio Stinghen Filho, Estevam Nicolas Chen, J. Junior, Ricardo da Silva Barboza","doi":"10.1145/3230744.3230750","DOIUrl":null,"url":null,"abstract":"In this paper we compare the effectiveness of various methods of machine learning algorithms for real-time hand gesture recognition, in order to find the most optimal way to identify static hand gestures, as well as the most optimal sample size for use during the training step of the algorithms. In our framework, Leap Motion and Unity were used to extract the data. The data was then used to be trained using Python and scikit-learn. Utilizing normalized information regarding the hands and fingers, we managed to get a hit rate of 97% using the decision tree classifier.","PeriodicalId":226759,"journal":{"name":"ACM SIGGRAPH 2018 Posters","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH 2018 Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3230744.3230750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper we compare the effectiveness of various methods of machine learning algorithms for real-time hand gesture recognition, in order to find the most optimal way to identify static hand gestures, as well as the most optimal sample size for use during the training step of the algorithms. In our framework, Leap Motion and Unity were used to extract the data. The data was then used to be trained using Python and scikit-learn. Utilizing normalized information regarding the hands and fingers, we managed to get a hit rate of 97% using the decision tree classifier.
使用跳跃运动的手势识别:机器学习算法之间的比较
在本文中,我们比较了各种机器学习算法在实时手势识别中的有效性,以找到最优的方法来识别静态手势,以及在算法的训练步骤中使用的最优样本量。在我们的框架中,我们使用Leap Motion和Unity来提取数据。然后使用Python和scikit-learn对数据进行训练。利用关于手和手指的规范化信息,我们使用决策树分类器获得了97%的命中率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信