Fast approximations by machine learning: predicting the energy of dimers using convolutional neural networks

D. Hennessey, M. Klobukowski, P. Lu
{"title":"Fast approximations by machine learning: predicting the energy of dimers using convolutional neural networks","authors":"D. Hennessey, M. Klobukowski, P. Lu","doi":"10.46354/i3m.2019.emss.031","DOIUrl":null,"url":null,"abstract":"We introduce fast approximations by machine learning (FAML) to compute the energy of molecular systems. FAML can be six times faster than a traditional quantum chemistry approach for molecular geometry optimisation, at least for a simple dimer. Hardware accelerators for machine learning (ML) can further improve FAML’s performance. Since the quantum chemistry calculations show poor algorithmic scaling, faster methods that produce a similar level of accuracy to the more rigorous level of quantum theory are important. As a FAML proof-of-concept, we use a convolutional neural network (CNN) to make energy predictions on the F2 molecular dimer system. Training data for the CNN is computed using a quantum chemistry application (i.e., GAMESS) and represented as an image. Using fivefold cross-validation, we find that the predictions made by the CNN provide a good prediction to the theoretical calculations in a fraction of the time.","PeriodicalId":253381,"journal":{"name":"THE EUROPEAN MODELING AND SIMULATION SYMPOSIUM","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"THE EUROPEAN MODELING AND SIMULATION SYMPOSIUM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46354/i3m.2019.emss.031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce fast approximations by machine learning (FAML) to compute the energy of molecular systems. FAML can be six times faster than a traditional quantum chemistry approach for molecular geometry optimisation, at least for a simple dimer. Hardware accelerators for machine learning (ML) can further improve FAML’s performance. Since the quantum chemistry calculations show poor algorithmic scaling, faster methods that produce a similar level of accuracy to the more rigorous level of quantum theory are important. As a FAML proof-of-concept, we use a convolutional neural network (CNN) to make energy predictions on the F2 molecular dimer system. Training data for the CNN is computed using a quantum chemistry application (i.e., GAMESS) and represented as an image. Using fivefold cross-validation, we find that the predictions made by the CNN provide a good prediction to the theoretical calculations in a fraction of the time.
机器学习的快速逼近:使用卷积神经网络预测二聚体的能量
我们引入快速近似的机器学习(FAML)来计算分子系统的能量。FAML可以比传统的量子化学方法在分子几何优化方面快六倍,至少对于一个简单的二聚体。用于机器学习(ML)的硬件加速器可以进一步提高FAML的性能。由于量子化学计算显示出较差的算法尺度,因此能够产生与更严格的量子理论相似的精度水平的更快的方法是重要的。作为FAML的概念验证,我们使用卷积神经网络(CNN)对F2分子二聚体系统进行能量预测。CNN的训练数据是使用量子化学应用程序(即GAMESS)计算的,并表示为图像。使用五重交叉验证,我们发现CNN的预测在很短的时间内为理论计算提供了很好的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信