The Downscaling of the SMOS Global Sea Surface Salinity Product Based on MODIS Data Using a Deep Convolution Network Approach

Qixin Liu, Linlin Xu, Zhiwen Zhang
{"title":"The Downscaling of the SMOS Global Sea Surface Salinity Product Based on MODIS Data Using a Deep Convolution Network Approach","authors":"Qixin Liu, Linlin Xu, Zhiwen Zhang","doi":"10.1145/3373419.3373462","DOIUrl":null,"url":null,"abstract":"Downscaling is a very important process to convert a coarse domain satellite product to a finer spatial resolution. In this paper, a deep learning based downscaling method was designed to improve the spatial resolution of the global sea surface salinity (SSS) products of Soil Moisture and Ocean Salinity (SMOS) satellite. The proposed algorithm is able to efficiently and effectively use high spatial-resolution Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data to improve the spatial resolution of SMOS SSS products.","PeriodicalId":352528,"journal":{"name":"Proceedings of the 2019 3rd International Conference on Advances in Image Processing","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 3rd International Conference on Advances in Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3373419.3373462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Downscaling is a very important process to convert a coarse domain satellite product to a finer spatial resolution. In this paper, a deep learning based downscaling method was designed to improve the spatial resolution of the global sea surface salinity (SSS) products of Soil Moisture and Ocean Salinity (SMOS) satellite. The proposed algorithm is able to efficiently and effectively use high spatial-resolution Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data to improve the spatial resolution of SMOS SSS products.
基于MODIS数据的SMOS全球海面盐度产品的深度卷积网络降尺度研究
降尺度是将粗域卫星产品转换为精细空间分辨率的重要过程。为了提高SMOS卫星全球海表盐度(SSS)数据的空间分辨率,设计了一种基于深度学习的降尺度方法。该算法能够高效有效地利用高空间分辨率中分辨率成像光谱仪(MODIS)卫星数据,提高SMOS SSS产品的空间分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信