Syntax description synthesis using gradient boosted trees

A. Astashkin, K. Chuvilin
{"title":"Syntax description synthesis using gradient boosted trees","authors":"A. Astashkin, K. Chuvilin","doi":"10.23919/FRUCT.2017.8071289","DOIUrl":null,"url":null,"abstract":"The article considers partially formalized text documents. For such documents, it is not possible to construct a formal grammar. Therefore, an external syntax description is used to build the syntax tree. The problem is the high labor intensity and the high professional requirements for manual preparation of such descriptions. It is proposed to use machine learning methods to automate this process. The training set is composed using the documents with known syntax description. Each document is represented as a syntax tree using the TEXnous parser. Each node of these trees represents a syntax element, and the set of nodes forms the training set. A way of a single syntax element description is proposed so that a formal description of the syntax elements constitutes the space of classes. In the article, this space is limited to the set of parser modes used during the documents analysis. A set of scientific articles is used for the experiments. XGBoost implementation of gradient boosted trees is chosen for result classification problem.","PeriodicalId":114353,"journal":{"name":"2017 20th Conference of Open Innovations Association (FRUCT)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 20th Conference of Open Innovations Association (FRUCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/FRUCT.2017.8071289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The article considers partially formalized text documents. For such documents, it is not possible to construct a formal grammar. Therefore, an external syntax description is used to build the syntax tree. The problem is the high labor intensity and the high professional requirements for manual preparation of such descriptions. It is proposed to use machine learning methods to automate this process. The training set is composed using the documents with known syntax description. Each document is represented as a syntax tree using the TEXnous parser. Each node of these trees represents a syntax element, and the set of nodes forms the training set. A way of a single syntax element description is proposed so that a formal description of the syntax elements constitutes the space of classes. In the article, this space is limited to the set of parser modes used during the documents analysis. A set of scientific articles is used for the experiments. XGBoost implementation of gradient boosted trees is chosen for result classification problem.
使用梯度增强树的语法描述合成
本文考虑部分形式化的文本文档。对于这样的文档,不可能构造正式的语法。因此,使用外部语法描述来构建语法树。问题是手工编写这类描述的劳动强度大,专业性要求高。建议使用机器学习方法使这一过程自动化。训练集使用已知语法描述的文档组成。使用TEXnous解析器将每个文档表示为语法树。这些树的每个节点代表一个语法元素,节点集形成训练集。提出了一种单一语法元素描述的方法,以便对构成类空间的语法元素进行形式化描述。在本文中,此空间仅限于文档分析期间使用的一组解析器模式。实验使用了一套科学论文。针对结果分类问题,选择了梯度提升树的XGBoost实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信