Remarks on model reference self-tuning PID controller using quantum neural network with qubit neurons

Kazuhiko Takahashi, Y. Shiotani, M. Hashimoto
{"title":"Remarks on model reference self-tuning PID controller using quantum neural network with qubit neurons","authors":"Kazuhiko Takahashi, Y. Shiotani, M. Hashimoto","doi":"10.1109/SOCPAR.2013.7054138","DOIUrl":null,"url":null,"abstract":"The control performance of an adaptive controller using a multi-layer quantum neural network comprising qubit neurons as an information processing unit is investigated in this paper. The control system is a self-tuning controller whose control parameters are tuned online by the quantum neural network to track the plant output to follow the desired output generated by a reference model. A proportional-integral-derivative (PID) controller is utilized as a conventional controller whose parameters are tuned by the quantum neural network. Computational experiments to control a single-input single-output discrete-time non-linear plant are conducted to evaluate capability and characteristics of the quantum neural self-tuning PID controller. Experimental results show feasibility and effectiveness of the proposed controller.","PeriodicalId":315126,"journal":{"name":"2013 International Conference on Soft Computing and Pattern Recognition (SoCPaR)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Soft Computing and Pattern Recognition (SoCPaR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCPAR.2013.7054138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The control performance of an adaptive controller using a multi-layer quantum neural network comprising qubit neurons as an information processing unit is investigated in this paper. The control system is a self-tuning controller whose control parameters are tuned online by the quantum neural network to track the plant output to follow the desired output generated by a reference model. A proportional-integral-derivative (PID) controller is utilized as a conventional controller whose parameters are tuned by the quantum neural network. Computational experiments to control a single-input single-output discrete-time non-linear plant are conducted to evaluate capability and characteristics of the quantum neural self-tuning PID controller. Experimental results show feasibility and effectiveness of the proposed controller.
使用带有量子位神经元的量子神经网络的模型参考自整定 PID 控制器评述
本文研究了使用由量子比特神经元组成的多层量子神经网络作为信息处理单元的自适应控制器的控制性能。该控制系统是一个自调整控制器,其控制参数由量子神经网络在线调整,以跟踪工厂输出,使其遵循参考模型生成的期望输出。比例-积分-派生(PID)控制器被用作传统控制器,其参数由量子神经网络调整。为了评估量子神经自调整 PID 控制器的能力和特性,我们进行了控制单输入单输出离散时间非线性工厂的计算实验。实验结果表明了所提控制器的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信