Development of a Diabetes Diagnosis System Using Machine Learning Algorithms

Victor I. Chang, Keerthi Kandadai, Q. Xu, Steven Guan
{"title":"Development of a Diabetes Diagnosis System Using Machine Learning Algorithms","authors":"Victor I. Chang, Keerthi Kandadai, Q. Xu, Steven Guan","doi":"10.4018/ijdst.296246","DOIUrl":null,"url":null,"abstract":"This paper describes how to develop diabetes diagnosis through the combined use of the support vector machine, the Decision Tree, Naive Bayes, K-nearest and finally, Random Forest (RF) algorithms. These methods are useful to predict diabetes jointly. The appropriateness of ML-depended techniques to tackle this issue has been revealed. This diabetes diagnosis system using machine-learning algorithms is used to review papers. This project was based on developing python-based code for machine learning algorithms to perform large scales of diabetes analysis. The hardware requirement of machine learning is RAM that is 128 GB DDR4 2133 MHz and 2 TB Hard Disk and needs 512 GB SSD. One standard library is NumPy that uses to support multi-dimensional arrays objects, various components, and matrices. The Random Forest Prediction representing the pictorial visualization of the model and the accuracy for the data analysis using the Random Forest is 76%.","PeriodicalId":118536,"journal":{"name":"Int. J. Distributed Syst. Technol.","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Distributed Syst. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijdst.296246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper describes how to develop diabetes diagnosis through the combined use of the support vector machine, the Decision Tree, Naive Bayes, K-nearest and finally, Random Forest (RF) algorithms. These methods are useful to predict diabetes jointly. The appropriateness of ML-depended techniques to tackle this issue has been revealed. This diabetes diagnosis system using machine-learning algorithms is used to review papers. This project was based on developing python-based code for machine learning algorithms to perform large scales of diabetes analysis. The hardware requirement of machine learning is RAM that is 128 GB DDR4 2133 MHz and 2 TB Hard Disk and needs 512 GB SSD. One standard library is NumPy that uses to support multi-dimensional arrays objects, various components, and matrices. The Random Forest Prediction representing the pictorial visualization of the model and the accuracy for the data analysis using the Random Forest is 76%.
利用机器学习算法开发糖尿病诊断系统
本文描述了如何通过结合使用支持向量机、决策树、朴素贝叶斯、k -最近邻和随机森林(RF)算法来开发糖尿病诊断。这些方法对糖尿病的联合预测具有实用价值。已经揭示了依赖于机器学习的技术解决这个问题的适当性。这个使用机器学习算法的糖尿病诊断系统用于审查论文。这个项目是基于开发基于python的机器学习算法代码来执行大规模的糖尿病分析。机器学习的硬件要求是128gb DDR4 2133 MHz的RAM和2tb的硬盘,需要512gb的SSD。NumPy是一个标准库,用于支持多维数组对象、各种组件和矩阵。随机森林预测代表了模型的图形可视化,使用随机森林进行数据分析的准确率为76%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信