Xu Chen, Li You, Xiaohang Song, Fan Jiang, Wen Wang, Xiqi Gao, G. Fettweis
{"title":"Network Massive MIMO Transmission Over Millimeter-Wave Bands","authors":"Xu Chen, Li You, Xiaohang Song, Fan Jiang, Wen Wang, Xiqi Gao, G. Fettweis","doi":"10.1109/ICC40277.2020.9149014","DOIUrl":null,"url":null,"abstract":"To alleviate the blockage effects involved in millimeter-wave propagation, we investigate network massive multiple-input multiple-output (MIMO) transmission where only statistical channel state information is available at base stations (BSs). We first establish a network massive MIMO transmission model over millimeter-wave bands using per-beam synchronization. We Figure out that the beam domain is in favor of performing transmission in this scenario. We also demonstrate that BSs can work individually when sending signals to user terminals. Based on these insights, the network massive MIMO precoding design is reduced to a network sum-rate maximization problem with respect to beam domain power allocation. By exploiting the sequential optimization method and random matrix theory, an iterative algorithm with guaranteed convergence is further proposed to solve the problem. Numerical results reveal that the proposed network massive MIMO transmission approach can effectively alleviate the blockage effects and provide substantial performance gains over the existing transmission approaches.","PeriodicalId":106560,"journal":{"name":"ICC 2020 - 2020 IEEE International Conference on Communications (ICC)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICC 2020 - 2020 IEEE International Conference on Communications (ICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC40277.2020.9149014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
To alleviate the blockage effects involved in millimeter-wave propagation, we investigate network massive multiple-input multiple-output (MIMO) transmission where only statistical channel state information is available at base stations (BSs). We first establish a network massive MIMO transmission model over millimeter-wave bands using per-beam synchronization. We Figure out that the beam domain is in favor of performing transmission in this scenario. We also demonstrate that BSs can work individually when sending signals to user terminals. Based on these insights, the network massive MIMO precoding design is reduced to a network sum-rate maximization problem with respect to beam domain power allocation. By exploiting the sequential optimization method and random matrix theory, an iterative algorithm with guaranteed convergence is further proposed to solve the problem. Numerical results reveal that the proposed network massive MIMO transmission approach can effectively alleviate the blockage effects and provide substantial performance gains over the existing transmission approaches.