Voxel based annealed particle filtering for markerless 3D articulated motion capture

C. Canton-Ferrer, J. Casas, M. Pardàs
{"title":"Voxel based annealed particle filtering for markerless 3D articulated motion capture","authors":"C. Canton-Ferrer, J. Casas, M. Pardàs","doi":"10.1109/3DTV.2009.5069645","DOIUrl":null,"url":null,"abstract":"This paper presents a view-independent approach to markerless human motion capture in low resolution sequences from multiple calibrated and synchronized cameras. Redundancy among cameras is exploited to generate a 3D voxelized representation of the scene and a human body model (HBM) is introduced towards analyzing these data. An annealed particle filtering scheme where every particle encodes an instance of the pose of the HBM is employed. Likelihood between particles and input data is performed using occupancy and surface information and kinematic constrains are imposed in the propagation step towards avoiding impossible poses. Test over the HumanEva annotated dataset yield quantitative results showing the effectiveness of the proposed algorithm.","PeriodicalId":230128,"journal":{"name":"2009 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DTV.2009.5069645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This paper presents a view-independent approach to markerless human motion capture in low resolution sequences from multiple calibrated and synchronized cameras. Redundancy among cameras is exploited to generate a 3D voxelized representation of the scene and a human body model (HBM) is introduced towards analyzing these data. An annealed particle filtering scheme where every particle encodes an instance of the pose of the HBM is employed. Likelihood between particles and input data is performed using occupancy and surface information and kinematic constrains are imposed in the propagation step towards avoiding impossible poses. Test over the HumanEva annotated dataset yield quantitative results showing the effectiveness of the proposed algorithm.
基于体素的退火粒子滤波无标记3D关节运动捕捉
本文提出了一种视点无关的方法,用于从多个校准和同步摄像机中获取低分辨率序列的无标记人体运动捕获。利用摄像机之间的冗余来生成场景的三维体素表示,并引入人体模型(HBM)来分析这些数据。采用一种退火粒子滤波方案,其中每个粒子编码HBM姿态的一个实例。粒子和输入数据之间的似然使用占用和表面信息执行,并且在传播步骤中施加运动学约束以避免不可能的姿势。在HumanEva注释数据集上的测试产生了定量结果,显示了所提出算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信