Using QMDD in Numerical Methods for Solving Linear Differential Equations via Walsh Functions

R. Stankovic, D. M. Miller
{"title":"Using QMDD in Numerical Methods for Solving Linear Differential Equations via Walsh Functions","authors":"R. Stankovic, D. M. Miller","doi":"10.1109/ISMVL.2015.32","DOIUrl":null,"url":null,"abstract":"This paper discusses the acceleration of computations involved in methods for solving a certain class of differential equations by Walsh series. These methods are based on computations with matrices of relatively large dimensions but having a block structure and including also the dyadic convolution matrices. We propose to represent the involved matrices by Quantum multiple-valued decision diagrams (QMDDs) and perform the computations over them. The structure of the matrices means the QMDDs are reasonably compact and therefore offer possibilities to speed up the overall computations as well as to work with matrices of large dimension which improves accuracy of the approximation of the required solutions by finite Walsh series.","PeriodicalId":118417,"journal":{"name":"2015 IEEE International Symposium on Multiple-Valued Logic","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Symposium on Multiple-Valued Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2015.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper discusses the acceleration of computations involved in methods for solving a certain class of differential equations by Walsh series. These methods are based on computations with matrices of relatively large dimensions but having a block structure and including also the dyadic convolution matrices. We propose to represent the involved matrices by Quantum multiple-valued decision diagrams (QMDDs) and perform the computations over them. The structure of the matrices means the QMDDs are reasonably compact and therefore offer possibilities to speed up the overall computations as well as to work with matrices of large dimension which improves accuracy of the approximation of the required solutions by finite Walsh series.
用QMDD求解Walsh函数线性微分方程的数值方法
本文讨论了用Walsh级数求解一类微分方程的方法所涉及的计算加速问题。这些方法是基于计算相对较大的维度,但具有块结构的矩阵,也包括二进卷积矩阵。我们提出用量子多值决策图(qmdd)来表示所涉及的矩阵,并对它们进行计算。矩阵的结构意味着qmdd相当紧凑,因此提供了加速整体计算以及处理大尺寸矩阵的可能性,这提高了有限Walsh级数近似所需解的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信