Orbifold bordism and duality for finite orbispectra

J. Pardon
{"title":"Orbifold bordism and duality for finite orbispectra","authors":"J. Pardon","doi":"10.2140/gt.2023.27.1747","DOIUrl":null,"url":null,"abstract":"We construct the stable (representable) homotopy category of finite orbispectra, whose objects are formal desuspensions of finite orbi-CW-pairs by vector bundles and whose morphisms are stable homotopy classes of (representable) relative maps. The stable representable homotopy category of finite orbispectra admits a contravariant involution extending Spanier--Whitehead duality. This duality relates homotopical cobordism theories (cohomology theories on finite orbispectra) represented by global Thom spectra to geometric (derived) orbifold bordism groups (homology theories on finite orbispectra). This isomorphism extends the classical Pontryagin--Thom isomorphism and its known equivariant generalizations.","PeriodicalId":254292,"journal":{"name":"Geometry & Topology","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2023.27.1747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We construct the stable (representable) homotopy category of finite orbispectra, whose objects are formal desuspensions of finite orbi-CW-pairs by vector bundles and whose morphisms are stable homotopy classes of (representable) relative maps. The stable representable homotopy category of finite orbispectra admits a contravariant involution extending Spanier--Whitehead duality. This duality relates homotopical cobordism theories (cohomology theories on finite orbispectra) represented by global Thom spectra to geometric (derived) orbifold bordism groups (homology theories on finite orbispectra). This isomorphism extends the classical Pontryagin--Thom isomorphism and its known equivariant generalizations.
有限轨道谱的轨道性和对偶性
构造了有限轨道双谱的稳定(可表示)同伦范畴,其对象是有限轨道- w -对通过向量束的形式悬空,其态射是(可表示)相对映射的稳定同伦类。有限轨道谱的稳定可表示同伦范畴承认一个逆变对合扩展的Spanier—Whitehead对偶。这种对偶性将全局性Thom谱表示的同位共调理论(有限轨道谱上的上同调理论)与几何(衍生)轨道共调群(有限轨道谱上的同调理论)联系起来。这种同构扩展了经典的庞特里亚金-托姆同构及其已知的等变推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信