{"title":"Periods of meromorphic quadratic\n differentials and Goldman bracket","authors":"D. Korotkin","doi":"10.1090/PSPUM/100/01763","DOIUrl":null,"url":null,"abstract":"We study symplectic properties of monodromy map for second order linear equation with meromorphic potential having only simple poles on a Riemann surface. We show that the canonical symplectic structure on the cotangent bundle $T^*M_{g,n}$ implies the Goldman bracket on the corresponding character variety under the monodromy map, thereby extending the recent results of the paper of M.Bertola, C.Norton and the author from the case of holomorphic to meromorphic potentials with simple poles.","PeriodicalId":384712,"journal":{"name":"Proceedings of Symposia in Pure\n Mathematics","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Symposia in Pure\n Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/PSPUM/100/01763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
We study symplectic properties of monodromy map for second order linear equation with meromorphic potential having only simple poles on a Riemann surface. We show that the canonical symplectic structure on the cotangent bundle $T^*M_{g,n}$ implies the Goldman bracket on the corresponding character variety under the monodromy map, thereby extending the recent results of the paper of M.Bertola, C.Norton and the author from the case of holomorphic to meromorphic potentials with simple poles.