A novel self-learning optimal control approach for decentralized guaranteed cost control of a class of complex nonlinear systems

Ding Wang, Hongwen Ma, Pengfei Yan, Derong Liu
{"title":"A novel self-learning optimal control approach for decentralized guaranteed cost control of a class of complex nonlinear systems","authors":"Ding Wang, Hongwen Ma, Pengfei Yan, Derong Liu","doi":"10.1109/ICICIP.2015.7388202","DOIUrl":null,"url":null,"abstract":"In this paper, a novel self-learning optimal control approach is established to design the decentralized guaranteed cost control of a class of complex nonlinear systems under uncertain environment. By expressing the interconnected sub-systems as a whole system, establishing an appropriate bounded function, and defining a modified cost function, the decentralized guaranteed cost control problem is transformed into an optimal control problem. Then, the online policy iteration algorithm is employed to solve iteratively the modified Hamilton-Jacobi-Bellman equation corresponding to the nominal system. A critic neural network is constructed to obtain the optimal control approximately. At last, a simulation example is provided to verify the effectiveness of the present control approach.","PeriodicalId":265426,"journal":{"name":"2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"44 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP.2015.7388202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, a novel self-learning optimal control approach is established to design the decentralized guaranteed cost control of a class of complex nonlinear systems under uncertain environment. By expressing the interconnected sub-systems as a whole system, establishing an appropriate bounded function, and defining a modified cost function, the decentralized guaranteed cost control problem is transformed into an optimal control problem. Then, the online policy iteration algorithm is employed to solve iteratively the modified Hamilton-Jacobi-Bellman equation corresponding to the nominal system. A critic neural network is constructed to obtain the optimal control approximately. At last, a simulation example is provided to verify the effectiveness of the present control approach.
一类复杂非线性系统分散保成本控制的一种新的自学习最优控制方法
针对不确定环境下一类复杂非线性系统的分散保成本控制问题,提出了一种新的自学习最优控制方法。通过将相互关联的子系统表示为一个整体系统,建立适当的有界函数,并定义修正的成本函数,将分散保证成本控制问题转化为最优控制问题。然后,采用在线策略迭代算法对标称系统对应的修正Hamilton-Jacobi-Bellman方程进行迭代求解。构造了一个批评性神经网络来近似地获得最优控制。最后通过仿真实例验证了所提控制方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信