{"title":"A novel self-learning optimal control approach for decentralized guaranteed cost control of a class of complex nonlinear systems","authors":"Ding Wang, Hongwen Ma, Pengfei Yan, Derong Liu","doi":"10.1109/ICICIP.2015.7388202","DOIUrl":null,"url":null,"abstract":"In this paper, a novel self-learning optimal control approach is established to design the decentralized guaranteed cost control of a class of complex nonlinear systems under uncertain environment. By expressing the interconnected sub-systems as a whole system, establishing an appropriate bounded function, and defining a modified cost function, the decentralized guaranteed cost control problem is transformed into an optimal control problem. Then, the online policy iteration algorithm is employed to solve iteratively the modified Hamilton-Jacobi-Bellman equation corresponding to the nominal system. A critic neural network is constructed to obtain the optimal control approximately. At last, a simulation example is provided to verify the effectiveness of the present control approach.","PeriodicalId":265426,"journal":{"name":"2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"44 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP.2015.7388202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, a novel self-learning optimal control approach is established to design the decentralized guaranteed cost control of a class of complex nonlinear systems under uncertain environment. By expressing the interconnected sub-systems as a whole system, establishing an appropriate bounded function, and defining a modified cost function, the decentralized guaranteed cost control problem is transformed into an optimal control problem. Then, the online policy iteration algorithm is employed to solve iteratively the modified Hamilton-Jacobi-Bellman equation corresponding to the nominal system. A critic neural network is constructed to obtain the optimal control approximately. At last, a simulation example is provided to verify the effectiveness of the present control approach.