{"title":"Basic considerations concerning lightning impulse voltage breakdown in vacuum","authors":"U. Schumann, M. Kurrat","doi":"10.1109/DEIV.2004.1418607","DOIUrl":null,"url":null,"abstract":"In this work, theoretical considerations concerning breakdown in the case of lightning impulse voltage ( 1.2/50μs) we investigated. Two breakdown Hypotheses are commonly available in publication. One is particle induced breakdown [1], where charged particles pass through the contact path. On contact with the anode, the induced processes lead to voltage collapse of the configuration. The other assumes that through field emission [2] current, micro tips knelt on the surface. An explosion of a micro tip leaves behind a micro plasma which induces the breakdown. Two breakdown types in the rear and front of the lightning impulse voltage can be recorded during dielectric tests of vacuum gaps to determine the electric strength. The breakdown processes should be compared considering their physical processes. The model should help to clarify which breakdown mechanism is more probable for the individual breakdown.","PeriodicalId":137370,"journal":{"name":"XXIst International Symposium on Discharges and Electrical Insulation in Vacuum, 2004. Proceedings. ISDEIV.","volume":"60 19","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"XXIst International Symposium on Discharges and Electrical Insulation in Vacuum, 2004. Proceedings. ISDEIV.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEIV.2004.1418607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this work, theoretical considerations concerning breakdown in the case of lightning impulse voltage ( 1.2/50μs) we investigated. Two breakdown Hypotheses are commonly available in publication. One is particle induced breakdown [1], where charged particles pass through the contact path. On contact with the anode, the induced processes lead to voltage collapse of the configuration. The other assumes that through field emission [2] current, micro tips knelt on the surface. An explosion of a micro tip leaves behind a micro plasma which induces the breakdown. Two breakdown types in the rear and front of the lightning impulse voltage can be recorded during dielectric tests of vacuum gaps to determine the electric strength. The breakdown processes should be compared considering their physical processes. The model should help to clarify which breakdown mechanism is more probable for the individual breakdown.