Dynamic fuzzy c-means (dFCM) clustering for continuously varying data environments

R. P. Sandhir, Satish Kumar
{"title":"Dynamic fuzzy c-means (dFCM) clustering for continuously varying data environments","authors":"R. P. Sandhir, Satish Kumar","doi":"10.1109/FUZZY.2010.5584333","DOIUrl":null,"url":null,"abstract":"Many real world applications require online analysis of streaming data, making an adaptive clustering technique desirable. Most adaptive variations of available clustering techniques are application-specific, and do not apply to the applications of clustering as a whole. With this in mind, a generalized algorithm is proposed which is a modification of the fuzzy c-means clustering technique, so that dynamic data environments in differing fields can be addressed and analyzed. We demonstrate the capabilities of the dynamic fuzzy c-means (dFCM) algorithm with the aid of synthetic data sets, and discuss a possible application of the dFCM algorithm in associative memories, through preliminary experiments.","PeriodicalId":377799,"journal":{"name":"International Conference on Fuzzy Systems","volume":"41 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2010.5584333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Many real world applications require online analysis of streaming data, making an adaptive clustering technique desirable. Most adaptive variations of available clustering techniques are application-specific, and do not apply to the applications of clustering as a whole. With this in mind, a generalized algorithm is proposed which is a modification of the fuzzy c-means clustering technique, so that dynamic data environments in differing fields can be addressed and analyzed. We demonstrate the capabilities of the dynamic fuzzy c-means (dFCM) algorithm with the aid of synthetic data sets, and discuss a possible application of the dFCM algorithm in associative memories, through preliminary experiments.
连续变化数据环境下的动态模糊c均值聚类
许多现实世界的应用程序需要对流数据进行在线分析,因此需要自适应聚类技术。可用集群技术的大多数自适应变体都是特定于应用程序的,并不适用于集群的整个应用程序。在此基础上,提出了一种基于模糊c均值聚类技术的广义聚类算法,可以对不同领域的动态数据环境进行处理和分析。我们在合成数据集的帮助下证明了动态模糊c均值(dFCM)算法的能力,并通过初步实验讨论了dFCM算法在联想记忆中的可能应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信