{"title":"Dynamic fuzzy c-means (dFCM) clustering for continuously varying data environments","authors":"R. P. Sandhir, Satish Kumar","doi":"10.1109/FUZZY.2010.5584333","DOIUrl":null,"url":null,"abstract":"Many real world applications require online analysis of streaming data, making an adaptive clustering technique desirable. Most adaptive variations of available clustering techniques are application-specific, and do not apply to the applications of clustering as a whole. With this in mind, a generalized algorithm is proposed which is a modification of the fuzzy c-means clustering technique, so that dynamic data environments in differing fields can be addressed and analyzed. We demonstrate the capabilities of the dynamic fuzzy c-means (dFCM) algorithm with the aid of synthetic data sets, and discuss a possible application of the dFCM algorithm in associative memories, through preliminary experiments.","PeriodicalId":377799,"journal":{"name":"International Conference on Fuzzy Systems","volume":"41 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2010.5584333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Many real world applications require online analysis of streaming data, making an adaptive clustering technique desirable. Most adaptive variations of available clustering techniques are application-specific, and do not apply to the applications of clustering as a whole. With this in mind, a generalized algorithm is proposed which is a modification of the fuzzy c-means clustering technique, so that dynamic data environments in differing fields can be addressed and analyzed. We demonstrate the capabilities of the dynamic fuzzy c-means (dFCM) algorithm with the aid of synthetic data sets, and discuss a possible application of the dFCM algorithm in associative memories, through preliminary experiments.