Edge modeling prediction for computed tomography images

Andreas Weinlich, P. Amon, A. Hutter, André Kaup
{"title":"Edge modeling prediction for computed tomography images","authors":"Andreas Weinlich, P. Amon, A. Hutter, André Kaup","doi":"10.1109/VCIP.2012.6410795","DOIUrl":null,"url":null,"abstract":"Predictive coding is applied in many state-of-the-art lossless image compression algorithms like JPEG-LS, CALIC, or least-squares-based methods. We propose a new approach for accurate intensity prediction in pixel-predictive coding of computed tomography (CT) images. Exploiting their particular edge characteristic, the method only relies on a small twelve-pixel context. It does neither require adaptation to larger-region image characteristics nor the transmission of side-information and therefore may be particularly suitable for compression of small images like in region-of-interest coding. While applying simple linear prediction with fixed weights in homogeneous regions, a Gauss error model-function is fit to given contexts in edge regions and then sampled at the position corresponding to the pixel to be predicted in order to obtain prediction values. By the example of CALIC, it is shown that for CT data the edge modeling prediction (EMP) approach can yield an even smaller prediction error than other methods relying on context modeling.","PeriodicalId":103073,"journal":{"name":"2012 Visual Communications and Image Processing","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Visual Communications and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP.2012.6410795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Predictive coding is applied in many state-of-the-art lossless image compression algorithms like JPEG-LS, CALIC, or least-squares-based methods. We propose a new approach for accurate intensity prediction in pixel-predictive coding of computed tomography (CT) images. Exploiting their particular edge characteristic, the method only relies on a small twelve-pixel context. It does neither require adaptation to larger-region image characteristics nor the transmission of side-information and therefore may be particularly suitable for compression of small images like in region-of-interest coding. While applying simple linear prediction with fixed weights in homogeneous regions, a Gauss error model-function is fit to given contexts in edge regions and then sampled at the position corresponding to the pixel to be predicted in order to obtain prediction values. By the example of CALIC, it is shown that for CT data the edge modeling prediction (EMP) approach can yield an even smaller prediction error than other methods relying on context modeling.
计算机断层扫描图像的边缘建模预测
预测编码应用于许多最先进的无损图像压缩算法,如JPEG-LS、CALIC或基于最小二乘的方法。本文提出了一种用于计算机断层扫描(CT)图像像素预测编码的精确强度预测方法。利用其特殊的边缘特征,该方法仅依赖于一个小的12像素上下文。它既不需要适应大区域图像特征,也不需要传输侧信息,因此可能特别适合像兴趣区域编码那样压缩小图像。在齐次区域进行简单的定权线性预测时,在边缘区域对给定的上下文进行高斯误差模型函数拟合,然后在待预测像素对应的位置进行采样,从而得到预测值。通过CALIC的实例表明,对于CT数据,边缘建模预测(EMP)方法比其他依赖上下文建模的方法产生更小的预测误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信