Sentiment Analysis on Social Media with Glove Using Combination CNN and RoBERTa

Diaz Tiyasya Putra, Erwin Budi Setiawan
{"title":"Sentiment Analysis on Social Media with Glove Using Combination CNN and RoBERTa","authors":"Diaz Tiyasya Putra, Erwin Budi Setiawan","doi":"10.29207/resti.v7i3.4892","DOIUrl":null,"url":null,"abstract":"Twitter is a popular social media platform that allows users to share short message’s opinion and engage in real-time conversations on a wide range of topics known as tweet. However, tweets often have a complicated and unclear context, which makes it difficult to determine the actual emotion. Therefore, sentiment analysis is required to see the tendency of an opinion, whether the opinion tends to be positive, negative, or neutral. Researchers or institutions can find out how the response and emotions of an issue are happening and make good decisions. With the large user of Twitter social media in Indonesia, sentiment analysis will be carried out using deep learning Convolutional Neural Network (CNN), Term Frequency-Inverse Document Frequency (TF-IDF), Robustly Optimized BERT Pretraining Approach (RoBERTa), Synthetic Minority Over-sampling Technique (SMOTE), and Global Vector (Glove). In this research, the dataset used is trending topics with hashtags related to government policies on Twitter social media and obtained through crawling. By using 30.811 data, the result shows the highest accuracy of 95.56% using CNN with a split ratio of 90:10, baseline unigram, RoBERTa, SMOTE, and Top10 corpus tweet with an increase 10.1%.","PeriodicalId":435683,"journal":{"name":"Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29207/resti.v7i3.4892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Twitter is a popular social media platform that allows users to share short message’s opinion and engage in real-time conversations on a wide range of topics known as tweet. However, tweets often have a complicated and unclear context, which makes it difficult to determine the actual emotion. Therefore, sentiment analysis is required to see the tendency of an opinion, whether the opinion tends to be positive, negative, or neutral. Researchers or institutions can find out how the response and emotions of an issue are happening and make good decisions. With the large user of Twitter social media in Indonesia, sentiment analysis will be carried out using deep learning Convolutional Neural Network (CNN), Term Frequency-Inverse Document Frequency (TF-IDF), Robustly Optimized BERT Pretraining Approach (RoBERTa), Synthetic Minority Over-sampling Technique (SMOTE), and Global Vector (Glove). In this research, the dataset used is trending topics with hashtags related to government policies on Twitter social media and obtained through crawling. By using 30.811 data, the result shows the highest accuracy of 95.56% using CNN with a split ratio of 90:10, baseline unigram, RoBERTa, SMOTE, and Top10 corpus tweet with an increase 10.1%.
结合CNN和RoBERTa对戴手套的社交媒体情感分析
Twitter是一个流行的社交媒体平台,允许用户分享短消息的观点,并就广泛的话题进行实时对话。然而,推文通常有一个复杂而不明确的背景,这使得很难确定实际的情绪。因此,情感分析需要看到一个意见的倾向,是倾向于积极的,消极的,还是中立的意见。研究人员或机构可以发现一个问题的反应和情绪是如何发生的,并做出正确的决定。由于印尼Twitter社交媒体的大量用户,情感分析将使用深度学习卷积神经网络(CNN)、词频-逆文档频率(TF-IDF)、稳健优化BERT预训练方法(RoBERTa)、合成少数过采样技术(SMOTE)和全局向量(Glove)进行。在本研究中,使用的数据集是Twitter社交媒体上带有与政府政策相关标签的趋势话题,通过爬行获得。使用30.811个数据,结果显示,使用CNN,分割比为90:10,基线图,RoBERTa, SMOTE, Top10语料库tweet准确率最高,达到95.56%,提高10.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信