Recommender systems for contextually-aware, versioned items

Yayu Zhou
{"title":"Recommender systems for contextually-aware, versioned items","authors":"Yayu Zhou","doi":"10.1145/3298689.3346955","DOIUrl":null,"url":null,"abstract":"While existing Recommender systems assume items are fixed entities, this research considers situations where there can be different versions of an item. We propose a process that is a type of contextually-aware post filtering for recommending items, and illustrate the system with real data from a newspaper. The novel framework decides whether or not to recommend particular news articles based on news trend and incorporates user states as additional contextual information and recommends versioned items based on user preferences.","PeriodicalId":215384,"journal":{"name":"Proceedings of the 13th ACM Conference on Recommender Systems","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3298689.3346955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

While existing Recommender systems assume items are fixed entities, this research considers situations where there can be different versions of an item. We propose a process that is a type of contextually-aware post filtering for recommending items, and illustrate the system with real data from a newspaper. The novel framework decides whether or not to recommend particular news articles based on news trend and incorporates user states as additional contextual information and recommends versioned items based on user preferences.
上下文感知、版本化项目的推荐系统
虽然现有的推荐系统假设项目是固定的实体,但本研究考虑了一个项目可能存在不同版本的情况。我们提出了一个过程,这是一种上下文感知的后过滤推荐项目,并用报纸的真实数据说明了该系统。新框架根据新闻趋势决定是否推荐特定的新闻文章,并将用户状态作为额外的上下文信息合并,并根据用户偏好推荐版本项目。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信