{"title":"COAL: Convolutional Online Adaptation Learning for Opinion Mining","authors":"I. Chaturvedi, E. Ragusa, P. Gastaldo, E. Cambria","doi":"10.1109/ICDMW51313.2020.00012","DOIUrl":null,"url":null,"abstract":"Thanks to recent advances in machine learning, some say AI is the new engine and data is the new coal. Mining this ‘coal’ from the ever-growing Social Web, however, can be a formidable task. In this work, we address this problem in the context of sentiment analysis using convolutional online adaptation learning (COAL). In particular, we consider semi-supervised learning of convolutional features, which we use to train an online model. Such a model, which can be trained in one domain but also used to predict sentiment in other domains, outperforms the baseline in the range of 5-20%.","PeriodicalId":426846,"journal":{"name":"2020 International Conference on Data Mining Workshops (ICDMW)","volume":"40 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW51313.2020.00012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Thanks to recent advances in machine learning, some say AI is the new engine and data is the new coal. Mining this ‘coal’ from the ever-growing Social Web, however, can be a formidable task. In this work, we address this problem in the context of sentiment analysis using convolutional online adaptation learning (COAL). In particular, we consider semi-supervised learning of convolutional features, which we use to train an online model. Such a model, which can be trained in one domain but also used to predict sentiment in other domains, outperforms the baseline in the range of 5-20%.