A PCNN-Based Edge Detection Algorithm for Rock Fracture Images

Changtao He, Weixing Wang
{"title":"A PCNN-Based Edge Detection Algorithm for Rock Fracture Images","authors":"Changtao He, Weixing Wang","doi":"10.1109/SOPO.2010.5504347","DOIUrl":null,"url":null,"abstract":"Image segmentation has attracted the attention of researchers for many decades. Different approaches have been developed in order to find out the solution in many different segmentation situations. In this paper a novel method for rock fracture image using improved pulse coupled neural networks (PCNN) is presented. We apply progressive scan and region marked method to detect accurate edges of rock fracture images, the experiment results show that the proposed method can be used as a new image edge detection method. Compared to the traditional edge detection algorithms such as Canny operator and the other edge detection operators (e.g. vector gradient and MV), the proposed method can easily obtain the rock fracture images' orientations, curvatures, lengths, apertures and other useful information.","PeriodicalId":155352,"journal":{"name":"2010 Symposium on Photonics and Optoelectronics","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Symposium on Photonics and Optoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOPO.2010.5504347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Image segmentation has attracted the attention of researchers for many decades. Different approaches have been developed in order to find out the solution in many different segmentation situations. In this paper a novel method for rock fracture image using improved pulse coupled neural networks (PCNN) is presented. We apply progressive scan and region marked method to detect accurate edges of rock fracture images, the experiment results show that the proposed method can be used as a new image edge detection method. Compared to the traditional edge detection algorithms such as Canny operator and the other edge detection operators (e.g. vector gradient and MV), the proposed method can easily obtain the rock fracture images' orientations, curvatures, lengths, apertures and other useful information.
基于pcnn的岩石断裂图像边缘检测算法
图像分割已经引起了研究者们几十年的关注。为了在许多不同的分割情况下找到解决方案,已经开发了不同的方法。提出了一种基于改进脉冲耦合神经网络(PCNN)的岩石断裂图像处理新方法。将渐进式扫描和区域标记方法应用于岩石断裂图像的精确边缘检测,实验结果表明,该方法可以作为一种新的图像边缘检测方法。与Canny算子等传统边缘检测算法和矢量梯度、MV等边缘检测算子相比,该方法可以方便地获取岩石裂缝图像的方向、曲率、长度、孔径等有用信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信