Evidential location estimation for events detected in Twitter

Özer Özdikis, Halit Oğuztüzün, P. Senkul
{"title":"Evidential location estimation for events detected in Twitter","authors":"Özer Özdikis, Halit Oğuztüzün, P. Senkul","doi":"10.1145/2533888.2533929","DOIUrl":null,"url":null,"abstract":"Event detection from microblogs and social networks, especially from Twitter, is an active and rich research topic. By grouping similar tweets in clusters, people can extract events and follow the happenings in a community. In this work, we focus on estimating the geographical locations of events that are detected in Twitter. An important novelty of our work is the application of evidential reasoning techniques, namely the Demspter-Shafer Theory (DST), for this problem. By utilizing several features of tweets, we aim to produce belief intervals for a set of possible discrete locations. DST helps us deal with uncertainties, assign belief values to subsets of solutions, and combine pieces of evidence obtained from different tweet features. The initial results on several real cases suggest the applicability and usefulness of DST for the problem.","PeriodicalId":167948,"journal":{"name":"Workshop on Geographic Information Retrieval","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Geographic Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2533888.2533929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

Event detection from microblogs and social networks, especially from Twitter, is an active and rich research topic. By grouping similar tweets in clusters, people can extract events and follow the happenings in a community. In this work, we focus on estimating the geographical locations of events that are detected in Twitter. An important novelty of our work is the application of evidential reasoning techniques, namely the Demspter-Shafer Theory (DST), for this problem. By utilizing several features of tweets, we aim to produce belief intervals for a set of possible discrete locations. DST helps us deal with uncertainties, assign belief values to subsets of solutions, and combine pieces of evidence obtained from different tweet features. The initial results on several real cases suggest the applicability and usefulness of DST for the problem.
在Twitter中检测到的事件的证据位置估计
来自微博和社交网络,尤其是Twitter的事件检测是一个活跃而丰富的研究课题。通过将类似的tweet分组在集群中,人们可以提取事件并跟踪社区中的事件。在这项工作中,我们专注于估计在Twitter中检测到的事件的地理位置。我们工作的一个重要的新颖之处是应用证据推理技术,即Demspter-Shafer理论(DST)来解决这个问题。通过利用推文的几个特征,我们的目标是为一组可能的离散位置产生置信区间。DST帮助我们处理不确定性,为解决方案的子集分配信念值,并结合从不同tweet特征中获得的证据。对几个实际案例的初步结果表明了DST对该问题的适用性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信