Green correspondence and relative projectivity for pairs of adjoint functors between triangulated categories

A. Zimmermann
{"title":"Green correspondence and relative projectivity for pairs of adjoint functors between triangulated categories","authors":"A. Zimmermann","doi":"10.2140/pjm.2020.308.473","DOIUrl":null,"url":null,"abstract":"Auslander and Kleiner proved in 1994 an abstract version of Green correspondence for pairs of adjoint functors between three categories. They produce additive quotients of certain subcategories giving the classical Green correspondence in the special setting of modular representation theory. Carlson, Peng and Wheeler showed in 1998 that Green correspondence in the classical setting of modular representation theory is actually an equivalence between triangulated categories with respect to a non standard triangulated structure. In the present note we first define and study a version of relative projectivity, respectively relative injectivity with respect to pairs of adjoint functors. We then modify Auslander Kleiner's construction such that the correspondence holds in the setting of triangulated categories.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/pjm.2020.308.473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Auslander and Kleiner proved in 1994 an abstract version of Green correspondence for pairs of adjoint functors between three categories. They produce additive quotients of certain subcategories giving the classical Green correspondence in the special setting of modular representation theory. Carlson, Peng and Wheeler showed in 1998 that Green correspondence in the classical setting of modular representation theory is actually an equivalence between triangulated categories with respect to a non standard triangulated structure. In the present note we first define and study a version of relative projectivity, respectively relative injectivity with respect to pairs of adjoint functors. We then modify Auslander Kleiner's construction such that the correspondence holds in the setting of triangulated categories.
三角化范畴间伴随函子对的绿色对应性和相对投影性
Auslander和Kleiner在1994年证明了三个范畴间的伴随函子对的Green对应的一个抽象版本。在模表示理论的特殊背景下,给出了经典的格林对应,得到了若干子范畴的加性商。Carlson、Peng和Wheeler在1998年表明,模表示理论经典背景下的格林对应实际上是三角化范畴相对于非标准三角化结构的等价。在本文中,我们首先定义并研究了相对投射性的一个版本,分别是伴随函子对的相对注入性。然后,我们修改了Auslander Kleiner的构造,使对应关系在三角分类的设置中保持不变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信