Joint Estimation of Age and Gender from Unconstrained Face Images Using Lightweight Multi-Task CNN for Mobile Applications

Jia-Hong Lee, Yi-Ming Chan, Ting-Yen Chen, Chu-Song Chen
{"title":"Joint Estimation of Age and Gender from Unconstrained Face Images Using Lightweight Multi-Task CNN for Mobile Applications","authors":"Jia-Hong Lee, Yi-Ming Chan, Ting-Yen Chen, Chu-Song Chen","doi":"10.1109/MIPR.2018.00036","DOIUrl":null,"url":null,"abstract":"Automatic age and gender classification based on unconstrained images has become essential techniques on mobile devices. With limited computing power, how to develop a robust system becomes a challenging task. In this paper, we present an efficient convolutional neural network (CNN) called lightweight multi-task CNN for simultaneous age and gender classification. Lightweight multi-task CNN uses depthwise separable convolution to reduce the model size and save the inference time. On the public challenging Adience dataset, the accuracy of age and gender classification is better than baseline multi-task CNN methods.","PeriodicalId":320000,"journal":{"name":"2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MIPR.2018.00036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

Automatic age and gender classification based on unconstrained images has become essential techniques on mobile devices. With limited computing power, how to develop a robust system becomes a challenging task. In this paper, we present an efficient convolutional neural network (CNN) called lightweight multi-task CNN for simultaneous age and gender classification. Lightweight multi-task CNN uses depthwise separable convolution to reduce the model size and save the inference time. On the public challenging Adience dataset, the accuracy of age and gender classification is better than baseline multi-task CNN methods.
基于轻量级多任务CNN的无约束人脸图像年龄和性别联合估计
基于无约束图像的年龄和性别自动分类已经成为移动设备上必不可少的技术。在有限的计算能力下,如何开发一个健壮的系统成为一个具有挑战性的任务。在本文中,我们提出了一种高效的卷积神经网络(CNN),称为轻量级多任务CNN,用于同时进行年龄和性别分类。轻量级多任务CNN使用深度可分离卷积来减小模型大小,节省推理时间。在公众挑战的受众数据集上,年龄和性别分类的准确率优于基线多任务CNN方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信