On the use of innate and adaptive parts of artificial immune systems for online fraud detection

Rentian Huang, H. Tawfik, A. Nagar
{"title":"On the use of innate and adaptive parts of artificial immune systems for online fraud detection","authors":"Rentian Huang, H. Tawfik, A. Nagar","doi":"10.1109/BICTA.2010.5645253","DOIUrl":null,"url":null,"abstract":"This paper describes a hybrid model for online fraud detection of the Video-on-Demand System as an E-commence application, which combines algorithms from the main two distinct viewpoints of the self, non-self theory and danger theory. Our artificial immune based algorithm includes the improved version of negative selection called Conserved Self Pattern Recognition Algorithm (CSPRA) and a recently established algorithm inspired by Danger Theory (DT) called Dendritic Cells Algorithm (DCA). The experimental results based on our Video-on-Demand case study demonstrate that the hybrid approach has a higher detection rate and lower false alarm when compared with the results achieved by only using CSPRA or DCA as individual algorithms.","PeriodicalId":302619,"journal":{"name":"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BICTA.2010.5645253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper describes a hybrid model for online fraud detection of the Video-on-Demand System as an E-commence application, which combines algorithms from the main two distinct viewpoints of the self, non-self theory and danger theory. Our artificial immune based algorithm includes the improved version of negative selection called Conserved Self Pattern Recognition Algorithm (CSPRA) and a recently established algorithm inspired by Danger Theory (DT) called Dendritic Cells Algorithm (DCA). The experimental results based on our Video-on-Demand case study demonstrate that the hybrid approach has a higher detection rate and lower false alarm when compared with the results achieved by only using CSPRA or DCA as individual algorithms.
利用人工免疫系统的先天部分和自适应部分进行在线欺诈检测
本文提出了一种电子商务视频点播系统在线欺诈检测的混合模型,该模型结合了自我、非自我理论和危险理论两种不同观点的算法。我们基于人工免疫的算法包括改进版的负选择保守自我模式识别算法(CSPRA)和最近建立的受危险理论(DT)启发的树突状细胞算法(DCA)。基于视频点播案例研究的实验结果表明,与单独使用CSPRA或DCA算法相比,混合方法具有更高的检测率和更低的误报率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信