{"title":"Ordinary Differential Equations","authors":"Fabian Immler, J. Hölzl","doi":"10.1137/1.9780898718256.ch3","DOIUrl":null,"url":null,"abstract":"Session Ordinary-Differential-Equations formalizes ordinary differential equations (ODEs) and initial value problems. This work comprises proofs for local and global existence of unique solutions (Picard-Lindelöf theorem). Moreover, it contains a formalization of the (continuous or even differentiable) dependency of the flow on initial conditions as the flow of ODEs. Not in the generated document are the following sessions: • HOL-ODE-Numerics: Rigorous numerical algorithms for computing enclosures of solutions based on Runge-Kutta methods and affine arithmetic. Reachability analysis with splitting and reduction at hyperplanes. • HOL-ODE-Examples: Applications of the numerical algorithms to concrete systems of ODEs (e.g., van der Pol and Lorenz attractor).","PeriodicalId":280633,"journal":{"name":"Arch. Formal Proofs","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arch. Formal Proofs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9780898718256.ch3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Session Ordinary-Differential-Equations formalizes ordinary differential equations (ODEs) and initial value problems. This work comprises proofs for local and global existence of unique solutions (Picard-Lindelöf theorem). Moreover, it contains a formalization of the (continuous or even differentiable) dependency of the flow on initial conditions as the flow of ODEs. Not in the generated document are the following sessions: • HOL-ODE-Numerics: Rigorous numerical algorithms for computing enclosures of solutions based on Runge-Kutta methods and affine arithmetic. Reachability analysis with splitting and reduction at hyperplanes. • HOL-ODE-Examples: Applications of the numerical algorithms to concrete systems of ODEs (e.g., van der Pol and Lorenz attractor).