Ordinary Differential Equations

Fabian Immler, J. Hölzl
{"title":"Ordinary Differential Equations","authors":"Fabian Immler, J. Hölzl","doi":"10.1137/1.9780898718256.ch3","DOIUrl":null,"url":null,"abstract":"Session Ordinary-Differential-Equations formalizes ordinary differential equations (ODEs) and initial value problems. This work comprises proofs for local and global existence of unique solutions (Picard-Lindelöf theorem). Moreover, it contains a formalization of the (continuous or even differentiable) dependency of the flow on initial conditions as the flow of ODEs. Not in the generated document are the following sessions: • HOL-ODE-Numerics: Rigorous numerical algorithms for computing enclosures of solutions based on Runge-Kutta methods and affine arithmetic. Reachability analysis with splitting and reduction at hyperplanes. • HOL-ODE-Examples: Applications of the numerical algorithms to concrete systems of ODEs (e.g., van der Pol and Lorenz attractor).","PeriodicalId":280633,"journal":{"name":"Arch. Formal Proofs","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arch. Formal Proofs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9780898718256.ch3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Session Ordinary-Differential-Equations formalizes ordinary differential equations (ODEs) and initial value problems. This work comprises proofs for local and global existence of unique solutions (Picard-Lindelöf theorem). Moreover, it contains a formalization of the (continuous or even differentiable) dependency of the flow on initial conditions as the flow of ODEs. Not in the generated document are the following sessions: • HOL-ODE-Numerics: Rigorous numerical algorithms for computing enclosures of solutions based on Runge-Kutta methods and affine arithmetic. Reachability analysis with splitting and reduction at hyperplanes. • HOL-ODE-Examples: Applications of the numerical algorithms to concrete systems of ODEs (e.g., van der Pol and Lorenz attractor).
常微分方程
常微分方程部分形式化了常微分方程(ode)和初值问题。这项工作包括局部和全局唯一解存在性的证明(Picard-Lindelöf定理)。此外,它还包含了流对初始条件的(连续的甚至可微的)依赖的形式化,作为ode的流。没有在生成的文档中包含以下会话:•HOL-ODE-Numerics:基于龙格-库塔方法和仿射算法计算解的框的严格数值算法。超平面上具有分裂和约简的可达性分析。•hol - ode -示例:数值算法在ode的具体系统中的应用(例如,van der Pol和Lorenz吸引子)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信