{"title":"A modified Blahut algorithm for decoding Reed-Solomon codes beyond half the minimum distance","authors":"S. Egorov, G. Markarian","doi":"10.1109/TIC.2003.1249078","DOIUrl":null,"url":null,"abstract":"A modification of the Blahut algorithm is proposed for decoding Reed-Solomon codes beyond half the minimum distance. An RS code is described as an (n, k) code, where the codeword consists of n symbols from a Galois field of q elements, k of which are information symbols, with r=(n-k) check symbols. We define the minimum distance, d=r+1, and the maximum number of error symbols that can be corrected, t. An effective method is offered for searching the unknown discrepancies needed for analytical continuation of the Berlekamp-Massey algorithm through two additional iterations. This reduces the search time by 2(q-1)n/((n+t+1)(n-t)) times compared to the Blahut algorithm. An architecture of a searcher for unknown discrepancies is given. The coding gain of the proposed algorithm is shown for some practical codes.","PeriodicalId":177770,"journal":{"name":"SympoTIC'03. Joint 1st Workshop on Mobile Future and Symposium on Trends in Communications","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SympoTIC'03. Joint 1st Workshop on Mobile Future and Symposium on Trends in Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TIC.2003.1249078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
A modification of the Blahut algorithm is proposed for decoding Reed-Solomon codes beyond half the minimum distance. An RS code is described as an (n, k) code, where the codeword consists of n symbols from a Galois field of q elements, k of which are information symbols, with r=(n-k) check symbols. We define the minimum distance, d=r+1, and the maximum number of error symbols that can be corrected, t. An effective method is offered for searching the unknown discrepancies needed for analytical continuation of the Berlekamp-Massey algorithm through two additional iterations. This reduces the search time by 2(q-1)n/((n+t+1)(n-t)) times compared to the Blahut algorithm. An architecture of a searcher for unknown discrepancies is given. The coding gain of the proposed algorithm is shown for some practical codes.