Effective search methods for pattern matching inferencing using specific similarity measures

T. Bilgiç, I. Turksen
{"title":"Effective search methods for pattern matching inferencing using specific similarity measures","authors":"T. Bilgiç, I. Turksen","doi":"10.1109/FUZZY.1992.258612","DOIUrl":null,"url":null,"abstract":"Pattern matching inferencing (PMI) is one of the ways of approximating the compositional rule of inference (CRI) as proposed by L. A. Zadeh (1973). PMI is a generic algorithm to create different approximate inferencing algorithms. In particular, approximate analogical reasoning, approximate deductive reasoning and approximate analogical and deductive reasoning are under the class of PMI. PMI as extended by C. Lucas and I. G. Turksen (1990) and the search methods currently used in PMI are considered. Several similarity measures are shown to have some desired properties to make the search process to fire rules in PMI more effective. Using these properties, two new search strategies are proposed instead of the commonly used exhaustive search.<<ETX>>","PeriodicalId":222263,"journal":{"name":"[1992 Proceedings] IEEE International Conference on Fuzzy Systems","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992 Proceedings] IEEE International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.1992.258612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Pattern matching inferencing (PMI) is one of the ways of approximating the compositional rule of inference (CRI) as proposed by L. A. Zadeh (1973). PMI is a generic algorithm to create different approximate inferencing algorithms. In particular, approximate analogical reasoning, approximate deductive reasoning and approximate analogical and deductive reasoning are under the class of PMI. PMI as extended by C. Lucas and I. G. Turksen (1990) and the search methods currently used in PMI are considered. Several similarity measures are shown to have some desired properties to make the search process to fire rules in PMI more effective. Using these properties, two new search strategies are proposed instead of the commonly used exhaustive search.<>
使用特定相似性度量进行模式匹配推理的有效搜索方法
模式匹配推理(PMI)是L. A. Zadeh(1973)提出的一种近似组合推理规则(CRI)的方法。PMI是一种通用算法,用于创建不同的近似推理算法。特别是近似类比推理、近似演绎推理和近似类比演绎推理都属于PMI的范畴。考虑了C. Lucas和I. G. Turksen(1990)扩展的PMI和目前PMI中使用的搜索方法。有几个相似度量具有一些所需的属性,可以使PMI中查找规则的搜索过程更有效。利用这些特性,提出了两种新的搜索策略来代替常用的穷举搜索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信