Local stereo matching algorithm using rotation-skeleton-based region

Xing Li, Yao Zhao, Chunyu Lin, Chao Yao
{"title":"Local stereo matching algorithm using rotation-skeleton-based region","authors":"Xing Li, Yao Zhao, Chunyu Lin, Chao Yao","doi":"10.1109/MMSP.2014.6958812","DOIUrl":null,"url":null,"abstract":"This paper proposes a local stereo matching algorithm for accurate disparity estimation by using 45° rotation-skeleton-based region (RSBR). For local stereo matching, an adaptive local region is important for the performance of the disparity estimation. In order to generate more accurate regions, we use a skeleton with 45° rotation to divide an initial window that achieved by mean-shift segmentation into four parts. All the pixels in the same height level are judged simultaneously, and the valid pixels in the four parts construct the 45° RSBR. Compared with the common local support region based on orthogonal skeleton, 45° RSBR enables to maintain the consistency in images and have the advantage of error tolerance. The local stereo matching algorithm with RSBR is improved in two aspects. First, the hybrid cost aggregation using the RSBR helps to remove some noise caused by outliers and improve the subjective performance. Second, the candidate values in the refinement step are selected from the RSBR, which ensures the validity of candidates. The experiment results demonstrate a good performance in Middlebury Stereo datasets, both in objective and subjective performance.","PeriodicalId":164858,"journal":{"name":"2014 IEEE 16th International Workshop on Multimedia Signal Processing (MMSP)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 16th International Workshop on Multimedia Signal Processing (MMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2014.6958812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper proposes a local stereo matching algorithm for accurate disparity estimation by using 45° rotation-skeleton-based region (RSBR). For local stereo matching, an adaptive local region is important for the performance of the disparity estimation. In order to generate more accurate regions, we use a skeleton with 45° rotation to divide an initial window that achieved by mean-shift segmentation into four parts. All the pixels in the same height level are judged simultaneously, and the valid pixels in the four parts construct the 45° RSBR. Compared with the common local support region based on orthogonal skeleton, 45° RSBR enables to maintain the consistency in images and have the advantage of error tolerance. The local stereo matching algorithm with RSBR is improved in two aspects. First, the hybrid cost aggregation using the RSBR helps to remove some noise caused by outliers and improve the subjective performance. Second, the candidate values in the refinement step are selected from the RSBR, which ensures the validity of candidates. The experiment results demonstrate a good performance in Middlebury Stereo datasets, both in objective and subjective performance.
基于旋转骨架区域的局部立体匹配算法
提出了一种基于45°旋转骨架区域(RSBR)的精确视差估计的局部立体匹配算法。对于局部立体匹配,自适应局部区域对视差估计的性能至关重要。为了生成更精确的区域,我们使用旋转45°的骨架将mean-shift分割得到的初始窗口划分为四个部分。同时对同一高度水平的所有像元进行判断,四部分的有效像元构成45°RSBR。与基于正交骨架的常用局部支持区域相比,45°RSBR能够保持图像的一致性,并具有容错的优势。对RSBR局部立体匹配算法进行了两方面的改进。首先,使用RSBR进行混合成本聚合有助于去除异常值引起的一些噪声,提高主观性能。其次,从RSBR中选择细化步骤中的候选值,保证候选值的有效性;实验结果表明,该方法在Middlebury Stereo数据集上具有良好的客观性能和主观性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信