Does geographical location have an impact on data samples extracted from Twitter?

R. Ivanova, Stefan Sobernig, Mark Strembeck
{"title":"Does geographical location have an impact on data samples extracted from Twitter?","authors":"R. Ivanova, Stefan Sobernig, Mark Strembeck","doi":"10.1109/SNAMS58071.2022.10062544","DOIUrl":null,"url":null,"abstract":"We report on an experiment that used ten different machines running on a standardized cloud platform in five different geographical locations around the globe (Frankfurt/Germany, Mumbai/India, Sydney/Australia, Seoul/South Korea, Virginia/USA) to collect datasets using Twitter's public free-of-charge API. Each of the ten machines extracted the tweets at the exact same time and using the exact same Twitter API parameters. We found that the characteristics of the datasets collected in different locations vary considerably, potentially affecting any analysis performed on such location-biased data. For example, the number of exactly identical tweets (i.e. all 90 metadata attributes of the tweets are the same for all ten machines) lays only between 0.15% and 20%. Based on these findings, we derive recommendations on how to mitigate the location-bias in practice.","PeriodicalId":371668,"journal":{"name":"2022 Ninth International Conference on Social Networks Analysis, Management and Security (SNAMS)","volume":"2015 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Ninth International Conference on Social Networks Analysis, Management and Security (SNAMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNAMS58071.2022.10062544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We report on an experiment that used ten different machines running on a standardized cloud platform in five different geographical locations around the globe (Frankfurt/Germany, Mumbai/India, Sydney/Australia, Seoul/South Korea, Virginia/USA) to collect datasets using Twitter's public free-of-charge API. Each of the ten machines extracted the tweets at the exact same time and using the exact same Twitter API parameters. We found that the characteristics of the datasets collected in different locations vary considerably, potentially affecting any analysis performed on such location-biased data. For example, the number of exactly identical tweets (i.e. all 90 metadata attributes of the tweets are the same for all ten machines) lays only between 0.15% and 20%. Based on these findings, we derive recommendations on how to mitigate the location-bias in practice.
地理位置对从Twitter中提取的数据样本有影响吗?
我们报告了一项实验,在全球五个不同地理位置(法兰克福/德国、孟买/印度、悉尼/澳大利亚、首尔/韩国、弗吉尼亚/美国)的标准化云平台上运行10台不同的机器,使用Twitter的公共免费API收集数据集。这十台机器中的每台都在完全相同的时间使用完全相同的Twitter API参数提取tweet。我们发现,在不同地点收集的数据集的特征差异很大,这可能会影响对此类位置偏差数据进行的任何分析。例如,完全相同的tweet的数量(即tweet的所有90个元数据属性在所有10台机器中都是相同的)仅在0.15%到20%之间。基于这些发现,我们提出了在实践中如何减轻区位偏见的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信