Building a Classifier Employing Prism Algorithm with Fuzzy Logic

Ishrat Nahar Farhana, Sajedul Hoque A.H.M, Rashed Mustafa, M. S. Chowdhury
{"title":"Building a Classifier Employing Prism Algorithm with Fuzzy Logic","authors":"Ishrat Nahar Farhana, Sajedul Hoque A.H.M, Rashed Mustafa, M. S. Chowdhury","doi":"10.5121/IJDKP.2017.7204","DOIUrl":null,"url":null,"abstract":"Classification in data mining is receiving immense interest in recent times. As the knowledge is based on historical data, classifications of data are essential for discovering the knowledge. To decrease the classification complexity, the quantitative attributes of data need splitting. But the splitting using the classical logic is less accurate. This can be overcome by the use of fuzzy logic. This paper illustrates how to build up the classification rules using the fuzzy logic. The fuzzy classifier is built on by using the prism decision tree algorithm. This classifier produces more realistic results than the classical one. The effectiveness of this method is justified over a sample dataset.","PeriodicalId":131153,"journal":{"name":"International Journal of Data Mining & Knowledge Management Process","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Mining & Knowledge Management Process","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/IJDKP.2017.7204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Classification in data mining is receiving immense interest in recent times. As the knowledge is based on historical data, classifications of data are essential for discovering the knowledge. To decrease the classification complexity, the quantitative attributes of data need splitting. But the splitting using the classical logic is less accurate. This can be overcome by the use of fuzzy logic. This paper illustrates how to build up the classification rules using the fuzzy logic. The fuzzy classifier is built on by using the prism decision tree algorithm. This classifier produces more realistic results than the classical one. The effectiveness of this method is justified over a sample dataset.
基于模糊逻辑的棱镜算法构建分类器
近年来,数据挖掘中的分类受到了极大的关注。由于知识是基于历史数据的,因此对数据进行分类是发现知识的必要条件。为了降低分类复杂度,需要对数据的定量属性进行拆分。但使用经典逻辑的分裂不太准确。这可以通过使用模糊逻辑来克服。本文阐述了如何利用模糊逻辑建立分类规则。采用棱镜决策树算法建立模糊分类器。这种分类器产生的结果比经典分类器更真实。通过一个样本数据集验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信