On Multivariate Singular Spectrum Analysis and Its Variants

Anish Agarwal, Abdullah Alomar, D. Shah
{"title":"On Multivariate Singular Spectrum Analysis and Its Variants","authors":"Anish Agarwal, Abdullah Alomar, D. Shah","doi":"10.1145/3489048.3526952","DOIUrl":null,"url":null,"abstract":"We introduce and analyze a simpler, practically useful variant of multivariate singular spectrum analysis (mSSA), a known time series method to impute (or de-noise) and forecast a multivariate time series. Towards this, we introduce a spatio-temporal factor model to analyze mSSA. This model includes the usual components used to model dynamics in time series analysis, such as trends (low order polynomials), seasonality (finite sum of harmonics), and linear time-invariant systems. We establish that given N time series and T observations per time series, the in-sample prediction error for both imputation and forecasting under mSSA scales as 1/√ min(N, T)T. This is an improvement over: (i) the 1/√T error scaling of SSA, which is the restriction of mSSA to univariate time series; (ii) the 1/min(N, T) error scaling for Temporal Regularized Matrix Factorized (TRMF), a matrix factorization based method for time series prediction. That is, mSSA exploits both the 'temporal' and 'spatial' structure in a multivariate time series. Our experimental results using various benchmark datasets confirm the characteristics of the spatio-temporal factor model and our theoretical findings---our variant of mSSA empirically performs as well or better compared to neural network based time series methods, LSTM and DeepAR.","PeriodicalId":264598,"journal":{"name":"Abstract Proceedings of the 2022 ACM SIGMETRICS/IFIP PERFORMANCE Joint International Conference on Measurement and Modeling of Computer Systems","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abstract Proceedings of the 2022 ACM SIGMETRICS/IFIP PERFORMANCE Joint International Conference on Measurement and Modeling of Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3489048.3526952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We introduce and analyze a simpler, practically useful variant of multivariate singular spectrum analysis (mSSA), a known time series method to impute (or de-noise) and forecast a multivariate time series. Towards this, we introduce a spatio-temporal factor model to analyze mSSA. This model includes the usual components used to model dynamics in time series analysis, such as trends (low order polynomials), seasonality (finite sum of harmonics), and linear time-invariant systems. We establish that given N time series and T observations per time series, the in-sample prediction error for both imputation and forecasting under mSSA scales as 1/√ min(N, T)T. This is an improvement over: (i) the 1/√T error scaling of SSA, which is the restriction of mSSA to univariate time series; (ii) the 1/min(N, T) error scaling for Temporal Regularized Matrix Factorized (TRMF), a matrix factorization based method for time series prediction. That is, mSSA exploits both the 'temporal' and 'spatial' structure in a multivariate time series. Our experimental results using various benchmark datasets confirm the characteristics of the spatio-temporal factor model and our theoretical findings---our variant of mSSA empirically performs as well or better compared to neural network based time series methods, LSTM and DeepAR.
多元奇异谱分析及其变体
我们介绍并分析了多元奇异谱分析(mSSA)的一种更简单、实用的变体,这是一种已知的时间序列方法,用于估算(或去噪)和预测多元时间序列。为此,我们引入了一个时空因子模型来分析mSSA。该模型包括通常用于时间序列分析中建模动态的组件,例如趋势(低阶多项式),季节性(有限谐波和)和线性时不变系统。我们建立了给定N个时间序列和每个时间序列T个观测值,在mSSA尺度下的imputation和prediction的样本内预测误差为1/√min(N, T)T。这是一种改进:(i) SSA的1/√T误差缩放,这是mSSA对单变量时间序列的限制;(ii)基于矩阵分解的时间序列预测方法Temporal regularization Matrix Factorized (TRMF)的1/min(N, T)误差缩放。也就是说,mSSA利用了多元时间序列中的“时间”和“空间”结构。我们使用各种基准数据集的实验结果证实了时空因素模型的特征和我们的理论发现——与基于神经网络的时间序列方法、LSTM和DeepAR相比,我们的mSSA变体在经验上表现得一样好,甚至更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信