A survey of the initialization of centers and widths in radial basis function network for classification

Chunru Dong, P. Chan, Wing W. Y. Ng, D. Yeung
{"title":"A survey of the initialization of centers and widths in radial basis function network for classification","authors":"Chunru Dong, P. Chan, Wing W. Y. Ng, D. Yeung","doi":"10.1109/ICMLC.2011.6016937","DOIUrl":null,"url":null,"abstract":"The radial basis function network (RBFN) has been widely used in various fields such as function regression, pattern recognition, and error detection, etc. However, the structural parameters of RBFN including the number of hidden units, centers vectors, and widths (variances) are one of the most importent issues when training a RBFN, which greatly affect the performance of RBFN. So, the objective of this paper is to construct an elementary survey about this problem. Firstly, the fundamental knowledge and notations of RBFN is introduced. Secondly, we summarize most existing network structure initialization methods for RBFN and categorize them into four goups. Then some typical appraoches for each category are introduced and discussed. The disadvantages and virtues for parts of methods are also introduced. Finally, the paper is concluded with a discussion of current difficulties and possible future directions about RBFN architecture selection.","PeriodicalId":228516,"journal":{"name":"2011 International Conference on Machine Learning and Cybernetics","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2011.6016937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The radial basis function network (RBFN) has been widely used in various fields such as function regression, pattern recognition, and error detection, etc. However, the structural parameters of RBFN including the number of hidden units, centers vectors, and widths (variances) are one of the most importent issues when training a RBFN, which greatly affect the performance of RBFN. So, the objective of this paper is to construct an elementary survey about this problem. Firstly, the fundamental knowledge and notations of RBFN is introduced. Secondly, we summarize most existing network structure initialization methods for RBFN and categorize them into four goups. Then some typical appraoches for each category are introduced and discussed. The disadvantages and virtues for parts of methods are also introduced. Finally, the paper is concluded with a discussion of current difficulties and possible future directions about RBFN architecture selection.
径向基函数网络分类中中心和宽度初始化的研究
径向基函数网络(RBFN)在函数回归、模式识别、错误检测等领域得到了广泛的应用。然而,RBFN的结构参数,包括隐藏单元的数量、中心向量和宽度(方差)是训练RBFN时最重要的问题之一,它极大地影响了RBFN的性能。因此,本文的目的是对这一问题进行初步调查。首先,介绍了RBFN的基本知识和符号。其次,总结了现有的RBFN网络结构初始化方法,并将其分为四类。然后介绍和讨论了各类别的典型方法。并介绍了部分方法的优缺点。最后,对RBFN结构选择的当前难点和未来可能的发展方向进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信