XUV spectroscopy of laser plasma from molecular coated metal targets

V. Papanyan, G. Nersisyan, F. Tittel
{"title":"XUV spectroscopy of laser plasma from molecular coated metal targets","authors":"V. Papanyan, G. Nersisyan, F. Tittel","doi":"10.1117/12.375293","DOIUrl":null,"url":null,"abstract":"Metal targets covered by micrometer layers of metal- phthalocyanines or fullerenes are studied here. An increase in XUV yield due to the optimized absorption of the laser field is reported. Effects of high-temperature plasma rapid expansion (velocity about 106 cm/s) were observed. Moderate power nanosecond and picosecond neodymium lasers are used to produce an incident intensity of 1011 to 1013 W/cm2 on the targets. The plasma electron density was measured by fitting observed spectral profiles to the theoretical profiles. Collisional, Doppler, and Stark broadening mechanisms were considered in the calculations. Our measurement technique permits us to determine the electron density and temperature dependence on distances from the target surface from 1 mm (where Ne approximately equals 1018 cm-3 and Te approximately equals 14 eV are measured for aluminum plasma) up to approximately 5 mm (where Ne <EQ 1017 cm-3). Electron temperature was measured by comparing intensities of spectral lines, belonging to the ions having a different degree of ionization. Preliminary experiments show that conversion efficiency for molecular coated targets is greater by a factor of approximately 1.5 than measured from bulk solid metal targets.","PeriodicalId":427427,"journal":{"name":"Atomic and Molecular Spectroscopy","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atomic and Molecular Spectroscopy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.375293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Metal targets covered by micrometer layers of metal- phthalocyanines or fullerenes are studied here. An increase in XUV yield due to the optimized absorption of the laser field is reported. Effects of high-temperature plasma rapid expansion (velocity about 106 cm/s) were observed. Moderate power nanosecond and picosecond neodymium lasers are used to produce an incident intensity of 1011 to 1013 W/cm2 on the targets. The plasma electron density was measured by fitting observed spectral profiles to the theoretical profiles. Collisional, Doppler, and Stark broadening mechanisms were considered in the calculations. Our measurement technique permits us to determine the electron density and temperature dependence on distances from the target surface from 1 mm (where Ne approximately equals 1018 cm-3 and Te approximately equals 14 eV are measured for aluminum plasma) up to approximately 5 mm (where Ne
分子包覆金属靶激光等离子体的XUV光谱
本文研究了由金属-酞菁或富勒烯微米层覆盖的金属靶。由于优化了激光场的吸收,XUV产率得到了提高。观察到高温等离子体快速膨胀(速度约为106 cm/s)的影响。中等功率的纳秒和皮秒钕激光器用于在目标上产生1011至1013 W/cm2的入射强度。等离子体电子密度通过将观测到的谱线与理论谱线拟合来测量。计算中考虑了碰撞、多普勒和斯塔克展宽机制。我们的测量技术使我们能够确定电子密度和温度对距离目标表面的依赖关系,从1毫米(在铝等离子体中,Ne大约等于1018 cm-3, Te大约等于14 eV)到大约5毫米(Ne
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信