Multiple steps time series prediction by a novel Recurrent Kernel Extreme Learning Machine approach

Zongying Liu, C. Loo, Naoki Masuyama, Kitsuchart Pasupa
{"title":"Multiple steps time series prediction by a novel Recurrent Kernel Extreme Learning Machine approach","authors":"Zongying Liu, C. Loo, Naoki Masuyama, Kitsuchart Pasupa","doi":"10.1109/ICITEED.2017.8250482","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel recurrent multi-steps- prediction model called Recurrent Kernel Extreme Learning Machine (RKELM). This model combines the strengths of recurrent multi-steps-prediction and Extreme Learning Machine (ELM) to unleash the limitation of prediction horizon. The kernel matrix is applied to replace the hidden layer mapping of ELM in order to solve the lack of predicting deterministic and parameter dependency. In the experiment, we apply two synthetic benchmark datasets and two real-world time series datasets including Malaysia palm oil price, ozone concentration of Toronto to evaluate RKELM and compare its performance against Recurrent Support Vector Regression (RSVR) and Recurrent Extreme Learning Machine (RELM). The experimental results show that RKELM has superior abilities in the different predicting horizons and stronger predicting deterministic than others.","PeriodicalId":267403,"journal":{"name":"2017 9th International Conference on Information Technology and Electrical Engineering (ICITEE)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 9th International Conference on Information Technology and Electrical Engineering (ICITEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITEED.2017.8250482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper proposes a novel recurrent multi-steps- prediction model called Recurrent Kernel Extreme Learning Machine (RKELM). This model combines the strengths of recurrent multi-steps-prediction and Extreme Learning Machine (ELM) to unleash the limitation of prediction horizon. The kernel matrix is applied to replace the hidden layer mapping of ELM in order to solve the lack of predicting deterministic and parameter dependency. In the experiment, we apply two synthetic benchmark datasets and two real-world time series datasets including Malaysia palm oil price, ozone concentration of Toronto to evaluate RKELM and compare its performance against Recurrent Support Vector Regression (RSVR) and Recurrent Extreme Learning Machine (RELM). The experimental results show that RKELM has superior abilities in the different predicting horizons and stronger predicting deterministic than others.
基于循环核极限学习机的多步时间序列预测
本文提出了一种新的循环多步预测模型——循环核极限学习机(RKELM)。该模型结合了循环多步预测和极限学习机(ELM)的优点,突破了预测视界的局限性。采用核矩阵代替隐层映射,解决了预测确定性不足和参数依赖性不足的问题。在实验中,我们使用两个合成基准数据集和两个真实时间序列数据集(马来西亚棕榈油价格、多伦多臭氧浓度)来评估RKELM,并将其与循环支持向量回归(RSVR)和循环极限学习机(RELM)的性能进行比较。实验结果表明,RKELM在不同预测层面上都具有较强的预测能力和预测确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信