Aero Engine Performance Monitoring Using Least Squares Regression and Spectral Clustering

Kunaal Saxena, M. Nene
{"title":"Aero Engine Performance Monitoring Using Least Squares Regression and Spectral Clustering","authors":"Kunaal Saxena, M. Nene","doi":"10.3233/apc210217","DOIUrl":null,"url":null,"abstract":"Threshold-based flight data recorder analysis techniques have been widely used across the aerospace industry for fault detection and accident prevention. These techniques can detect pre-programmed events but fail to capture unknown patterns in the dataset. This research proposes a machine learning (ML) algorithm to analyze and detect unusual aero engine performance of a turboshaft engine mounted on a single engine rotorcraft. The performance is first modelled from an FDR dataset consisting of hundred flights, using least squares regression (LSR). A technique to scale the model by adding flight data from subsequent flights is thereafter discussed. Spectral Clustering is used for testing and validating the hypothesis derived from the regression model, by employing synthetically generated FDR data for twenty-five flights.","PeriodicalId":429440,"journal":{"name":"Recent Trends in Intensive Computing","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Trends in Intensive Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/apc210217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Threshold-based flight data recorder analysis techniques have been widely used across the aerospace industry for fault detection and accident prevention. These techniques can detect pre-programmed events but fail to capture unknown patterns in the dataset. This research proposes a machine learning (ML) algorithm to analyze and detect unusual aero engine performance of a turboshaft engine mounted on a single engine rotorcraft. The performance is first modelled from an FDR dataset consisting of hundred flights, using least squares regression (LSR). A technique to scale the model by adding flight data from subsequent flights is thereafter discussed. Spectral Clustering is used for testing and validating the hypothesis derived from the regression model, by employing synthetically generated FDR data for twenty-five flights.
基于最小二乘回归和谱聚类的航空发动机性能监测
基于阈值的飞行数据记录器分析技术已广泛应用于航空航天工业的故障检测和事故预防。这些技术可以检测预编程事件,但无法捕获数据集中的未知模式。本研究提出了一种机器学习(ML)算法来分析和检测安装在单发动机旋翼机上的涡轴发动机的异常航空发动机性能。首先使用最小二乘回归(LSR)从包含数百个航班的FDR数据集对性能进行建模。然后讨论了一种通过添加后续飞行数据来缩放模型的技术。光谱聚类用于测试和验证从回归模型中得出的假设,通过使用合成生成的25次飞行的FDR数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信