Wall-crossing implies Brill-Noether applications of stability conditions on surfaces

Arend Bayer
{"title":"Wall-crossing implies Brill-Noether\n applications of stability conditions on\n surfaces","authors":"Arend Bayer","doi":"10.1090/PSPUM/097.1/01668","DOIUrl":null,"url":null,"abstract":"Over the last few years, wall-crossing for Bridgeland stability conditions has led to a large number of results in algebraic geometry, particular on birational geometry of moduli spaces. \nWe illustrate some of the methods behind these result by reproving Lazarsfeld's Brill-Noether theorem for curves on K3 surfaces via wall-crossing. We conclude with a survey of recent applications of stability conditions on surfaces. \nThe intended reader is an algebraic geometer with a limited working knowledge of derived categories. This article is based on the author's talk at the AMS Summer Institute on Algebraic Geometry in Utah, July 2015.","PeriodicalId":412716,"journal":{"name":"Algebraic Geometry: Salt Lake City\n 2015","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Geometry: Salt Lake City\n 2015","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/PSPUM/097.1/01668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

Over the last few years, wall-crossing for Bridgeland stability conditions has led to a large number of results in algebraic geometry, particular on birational geometry of moduli spaces. We illustrate some of the methods behind these result by reproving Lazarsfeld's Brill-Noether theorem for curves on K3 surfaces via wall-crossing. We conclude with a survey of recent applications of stability conditions on surfaces. The intended reader is an algebraic geometer with a limited working knowledge of derived categories. This article is based on the author's talk at the AMS Summer Institute on Algebraic Geometry in Utah, July 2015.
过墙意味着稳定条件在表面上的Brill-Noether应用
在过去的几年里,桥地稳定性条件下的过壁问题在代数几何,特别是模空间的双民族几何中得到了大量的结果。我们通过wall-crossing对K3曲面上曲线的Lazarsfeld Brill-Noether定理进行了改进,从而说明了这些结果背后的一些方法。我们总结了稳定性条件在表面上的最新应用。目标读者是一个代数几何与派生类别有限的工作知识。这篇文章是基于作者在2015年7月在犹他州举行的AMS暑期代数几何学院的演讲。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信