Classifying Mangrove Crub Images for Growth Stages Detection and Monitoring

Jasmin Almarinez, Alexander A. Hernandez
{"title":"Classifying Mangrove Crub Images for Growth Stages Detection and Monitoring","authors":"Jasmin Almarinez, Alexander A. Hernandez","doi":"10.1109/SDPC.2019.00134","DOIUrl":null,"url":null,"abstract":"This is a research-in-progress of designing an intelligent system for mangrove crab larval growth stages development characterization and detection. This research applies image processing, machine learning, and prototyping in the design of the system. An initial experiment is conducted to verify the accuracy of classification and recognition. The model achieved an average of 85% accuracy in classification of larval images samples. This study contributes to the development of the corpus of mangrove crab larval images in a context of a developing country. This paper also recommends further enhancement of the system.","PeriodicalId":403595,"journal":{"name":"2019 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SDPC.2019.00134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This is a research-in-progress of designing an intelligent system for mangrove crab larval growth stages development characterization and detection. This research applies image processing, machine learning, and prototyping in the design of the system. An initial experiment is conducted to verify the accuracy of classification and recognition. The model achieved an average of 85% accuracy in classification of larval images samples. This study contributes to the development of the corpus of mangrove crab larval images in a context of a developing country. This paper also recommends further enhancement of the system.
红树林碎石图像分类用于生长阶段检测与监测
本研究旨在设计一套红树林蟹幼虫生长发育阶段、特征及检测的智能系统。本研究在系统设计中应用了图像处理、机器学习和原型设计。为了验证分类识别的准确性,进行了初步实验。该模型对幼虫图像样本的分类准确率平均达到85%。本研究有助于发展中国家红树林蟹幼虫图像语料库的开发。本文还建议进一步完善这一制度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信